夏 鹏, 昝春芳, 李建安, 侯婷婷, 张 恒, 张 郡
(吉林大学第二医院, 骨科, 吉林 长春, 130041)
p53通路抑制FANCD2基因的表达来诱导骨肉瘤MG-63细胞凋亡
夏鹏, 昝春芳, 李建安, 侯婷婷, 张恒, 张郡
(吉林大学第二医院, 骨科, 吉林 长春, 130041)
摘要:目的研究与骨肉瘤(OS)和范可尼贫血(FA)相关联的通路和分子机制。方法进行范可尼贫血互补群D2(FANCD2)的siRNA构建并转录至骨肉瘤细胞株MG-63细胞中。通过Western blot方法检测MG-63细胞中FANCD2蛋白表达。结果在MG-63细胞中, FANCD2基因表达受到抑制,诱导细胞调亡。p53信号通路介导细胞凋亡。FANCD2基因表达抑制后,TP53INP1基因表达上调,促进p53的磷酸化, p21蛋白被激活,导致依赖半胱天冬酶介导的细胞凋亡。结论抑制FANCD2基因表达可以诱导骨肉瘤细胞凋亡。
关键词:范可尼贫血互补群D2; 骨肉瘤; p53; 细胞凋亡; 范可尼贫血; p21蛋白; 半胱天冬酶
骨肉瘤(OS)是骨组织中最常见的原发性恶性肿瘤,主要入侵长骨的干骺端,预后不良[1]。原癌基因及抑癌基因功能障碍是骨肉瘤致病机制之一。正如大多数恶性肿瘤一样,骨肉瘤也涉及多重致癌基因激活和抑癌基因突变,原癌基因如c-myc、ras、fos等,抑癌基因如p16、p53、Rb等[2-5]。骨肉瘤是范可尼贫血的并发症之一,骨肉瘤和范可尼贫血更容易发生在青春期。范可尼贫血互补群D2(FANCD2)是骨肉瘤的重要相关蛋白。本研究进行FANCD2的siRNA构建并转录至骨肉瘤MG-63细胞,探讨细胞凋亡以及凋亡相关的信号通路,揭示FANCD2在骨肉瘤发育过程中的作用,现报告如下。
1材料与方法
1.1MG-63细胞中FANCD2 siRNA构建及转录
由圣克鲁斯美国生物技术公司(Santa Cruz Biotechnology, Inc. 美国德州)设计及合成靶向FANCD2的siRNA和阴性对照iRNA(control siRNA)。利用脂质体将其转染到MG-63 细胞后,利用Western blot方法检测24 h和48 h MG-63细胞中FANCD2蛋白的表达并以此评估siRNA的有效性。
1.2细胞凋亡的检测
SiRNA转录后24 h和48 h, 采用PI单染,流式细胞术检测细胞周期变化,分别设立以下4组,即对照组,阴性对照siRNA组,FANCD2 siRNA干扰24 h组以及FANCD2 siRNA干扰48 h组。检测MG-63细胞G0/G1,S和G2/M期细胞百分比,采用Annexin V-FITC凋亡检测试剂盒,流式细胞术检测细胞周期变化。
1.3细胞凋亡关联蛋白
通过Western blot方法检测TP53INP1, phos-p53、p21蛋白、caspase-9和caspase-3的产物,如上所述,分别检测以上4组。
1.4统计学分析
所有数据采用SPSS 19.0软件包进行分析。用平均值±标准差表示实验数据,同质性方差检验后,使用样本独立t检验的方法比较2组数据,超过2组使用方差分析,P<0.05表明差异有统计学意义。
2结果
2.1靶向FANCD2的siRNA对骨肉瘤MG-63细胞FANCD2表达的影响
对照组和阴性对照siRNA组FANCD2蛋白高表达,且无明显差异,说明阴性对照对FANCD2没有产生干扰效应,而FANCD2 siRNA干扰24 h(FANCD2 siRNA 24 h)和 FANCD2 siRNA干扰48 h(FANCD2 siRNA 48 h)后,均能显著阻断FANCD2 蛋白的表达,且以干扰48 h效果更明显。见图1。
注: 1. 对照组; 2. 阴性对照 siRNA组;3. FANCD2 siRNA干扰24 h组;4. FANCD2 siRNA干扰48 h组
图1MG-63细胞中FANCD2蛋白表达HE染色,100倍
2.2靶向FANCD2的siRNA对骨肉瘤MG-63细胞凋亡的影响
采用流式细胞术检测FANCD2的siRNA干扰后的MG-63细胞周期变化。与对照组比较,阴性对照siRNA组MG-63细胞正常和坏死无明显差异,而凋亡显著增加(P<0.05), 可能与加入的转染试剂产生的作用有关; FANCD2 siRNA 干扰24 h组和FANCD2 siRNA干扰48 h组,正常细胞百分比显著降低,而凋亡细胞百分比显著升高(P<0.05或P<0.001); 而且与FANCD2 siRNAg干扰24 h组比较,FANCD2 siRNA干扰48 h组正常细胞百分比显著降低,凋亡细胞百分比显著增加(P<0.001)。见表1、图2。上述结果暗示靶向FANCD2的siRNA导致MG-63细胞死亡不是以坏死为主,而是以凋亡为主,且以48 h诱导的凋亡更多。
与对照组比较,*P<0.05, **P<0.01, 与FANCD2 siRNA干扰24 h组比较, ##P<0.01。
3讨论
范可尼贫血(FA)是一种罕见的常染色体或X连锁引发的隐性遗传性疾病。15种FA相关联的基因的缺失或突变均可引发范可尼贫血。这些关联基因构成一个复杂的网络,称作FA 途径,范可尼贫血互补群D2(FANCD2)在途径中起关键作用。在转录后修饰(磷酸化、泛素化)等方面[6-7], FANCD2蛋白在肿瘤发生、细胞凋亡和其他重要生命进程中的基因调控表达方面起重要作用[8-10]。范可尼贫血患者有相当高的患癌风险[11]。研究[12]显示, 28%的范可尼贫血患者将在40岁之前发生非造血系统肿瘤,表明在范可尼贫血与恶性肿瘤之间有显著正相关性。范可尼贫血患者通常会患有头颈、皮肤或肛门-生殖器鳞状细胞癌[13], 但是几乎没有发现骨肉瘤与范可尼贫血途径相关。
图2流式细胞术检测FANCD2的siRNA干扰后的MG-63细胞凋亡比例(n= 4)HE染色,100倍
FANCD2基因在 FA/BRCA通路上起关键作用。另有研究[14-16]发现,FANCD2基因参与 DNA损伤修复、细胞周期停滞、重构染色质、DNA甲基化以及细胞凋亡等,对机体细胞生长、分化和维护至关重要。然而,它与骨肉瘤的关联仍不清楚。本研究成功地构建出一个高效的靶向FANCD2基因的siRNA, 转染至MG-63细胞后几乎没有观察到FANCD2蛋白的表达。它可以抑制细胞增殖,影响细胞周期停滞和细胞凋亡。FANCD2基因受到抑制甚至缺失将严重改变肿瘤细胞増殖的生物进程。大量研究[17-18]表明,肿瘤细胞可以无限增殖、转移及入侵。因此,常用的方法是通过诱导肿瘤细胞来控制肿瘤细胞的凋亡。FANCD2基因干扰MG-63细胞后,观察细胞凋亡。FANCD2基因的siRNA干扰诱导细胞凋亡可以调节p53的信号通路, Western blot方法证实了上述结果。
TP53INP1(p53的上游蛋白), p53的磷酸化(phos-p53), p21蛋白 (参与调节G1期的下游蛋白),激活caspase-9和caspase-3(凋亡相关蛋白)通过Western blot方法检测。转染到MG-63 细胞FANCD2的siRNA干扰48 h后, TP53INP1, p53, p21, caspase-9, caspase-3 mRNA的表达显著升高; p53, p21和TP531W1蛋白产物也増加了。实验结果显示,MG-63细胞的凋亡是p53信号通路介导的。siRNA-FANCD2转染到MG-63细胞后,转录时, FANCD2基因表达受到抑制, TP53INP1被激活。TP53INP1的表达促进p53蛋白Ser15位点的磷酸化;磷酸化的p53激活了p21, 随后开始p53凋亡信号通路。p21是p53的下游基因,是细胞周期蛋白依赖性激酶抑制因子,与p53导致的细胞周期停滞相互作用。活化的p53与的p21抑制肿瘤细胞增殖,并导致肿瘤细胞G1期的停滞。此外, p53可介导磷酸化线粒体凋亡途径。它导致线粒体通透性的改变,随后将多种细胞凋亡因子释放到细胞质中,最终导致MG-63细胞凋亡。
p53也可以激活半胱天冬酶通路,半胱天冬酶的激活促进细胞凋亡。半胱天冬酶属于半胱氨酸蛋白酶家族,在细胞凋亡的过程中起关键作用[19]。在半胱天冬酶途径中,首先激活caspase-7, 然后激活caspase-12,进一步裂解caspase-9和caspase-3,最后引发细胞凋亡[20-22]。而caspase-3在这个过程中是下游因子,是半胱天冬酶家族的关键酶,广泛表达于各种肿瘤组织[23-24]。本研究表明,caspase-3在RNA干扰后裂解并活化,最终诱导细胞凋亡。
综上所述, MG-63细胞中FANCD2的siRNA干扰导致FANCD2受到抑制,检测了细胞凋亡情况。细胞凋亡可能是由p53信号通路引发的。FANCD2表达被抑制,促进TP53INP1 基因表达,进一步加强p53的磷酸化,导致细胞周期在G1期停滞,最后依赖半胱天冬酶诱导细胞凋亡。FANCD2在骨肉瘤生长发育过程中起关键作用,抑制FANCD2基因的表达,可以有效地促进骨肉瘤细胞的凋亡,为治疗骨肉瘤提供新的研究方向。
参考文献
[1]Hu X, Liu Y, Qin C, et al. Up-regulated isocitrate dehydrogenase 1 supresses proliferation, migration and invasion in osteosarcoma: in vitro and in vivo[J]. Cancer Lett, 2014, 346: 114-121.
[2]Maeda J, Yurkon CR, Fujisawa H, et al. Genomic instability and telomere fusion of canine osteosarcoma cells[J]. PLoS One, 2012, 7(8): e43355-e43364.
[3]Tan M L, Choong P M, Dass C R. Osteosarcoma: conventional treatment vs. gene therapy[J]. Cancer Biology and Therapy, 2009, 8(2): 106-117.
[4]Smida J, Baumhoer D, Rosemann M, et al. Genomic alterations and allelic imbalances are strong prognostic predictors in osteosarcoma [J]. Clinical Cancer Research, 2010, 16(16): 4256-4267.
[5]Ta H T, Dass C R, Choong P M, et al. Osteosarcoma treatment: state of the art[J]. Cancer and Metastasis Reviews, 2009, 28: 247-263.
[6]Chaudhury I, Sareen A, Raghunandan M, et al. FANCD2 regulates BLM complex functions independently of FANCI to promote replication fork recovery[J]. Nucleic Acids Res, 2013, 41(13): 6444-6459.
[7]Rego M A, Kolling FW 4th, Vuono E A, et al. Regulation of the Fanconi anemia pathway by a CUE ubiquitin-binding domain in the FANCD2 protein[J]. Blood, 2012, 120(10): 2109- 2117.
[8]Koptyra M, Stoklosa T, Hoser G, et al. Monoubiquitinated Fanconi anemia D2 (FANCD2-Ub) is required for BCR-ABL1 kinase-induced leukemogenesis[J]. Leukemia, 2011, 25(8): 1259-1267.
[9]Castillo P, Bogliolo M, Surralles J. Coordinated action of the Fanconi anemia and ataxia telangiectasia pathways in response to oxidative damage[J]. DNA Repair (Amst), 2011, 10(5): 518-525.
[10]Marietta C, Thompson L H, Lamerdin J E, et al. Acetaldehyde stimulates FANCD2 monoubiquitination, H2AX phosphorylation, and BRCA1 phosphorylation in human cells in vitro: implications for alcohol-related carcinogenesis[J]. Mutat Res, 2009, 664(1/2): 77- 83.
[11]Rosenberg P S, Tamary H, Alter B P. How high are carrier frequencies of rare recessive syndromes?Contemporary estimates for Fanconi Anemia in the United States and Israel[J]. American Journal of Medical Genetics, 2011, 155A(8): 1877-1883.
[12]Kachnic L A, Li L, Fournier L, et al. Fanconi anemia pathway heterogeneity revealed by cisplatin and oxaliplatin treatments[J]. Cancer Letters, 2010, 292(1): 73-79.
[13]Kutler D I, Singh B, Satagopan J, et al. A 20-year perspective on the International FanconiAnemia Registry (IFAR)[J]. Blood, 2003, 101(4): 1249-1256.
[14]Barroso E, Pita G, Arias J I, et al. The Fanconi anemia family of genes and its correlation with breast cancer susceptibility and breast cancer features[J]. Breast Cancer Res Treat, 2009, 118(3): 655-660.
[15]García M J, Fernández V, Osorio A, et al. Analysis of FANCB and FANCN/PALB2 fanconi anemia genes in BRCA1/2-negative Spanish breast cancer families[J]. Breast Cancer Res Treat, 2009, 113(3): 545-551.
[16]García M J, Fernández V, Osorio A, et al. Mutational analysis of FANCL, FANCM and the recently identified FANCI suggests that among the 13 known Fanconi Anemia genes, only FANCD1/BRCA2 plays a major role in high-risk breast cancer predisposition[J]. Carcinogenesis, 2009, 30(11): 1898-1902.
[17]Yu Y, Lee J S, Xie N, et al. Prostate stromal cells express the progesterone receptor to control cancer cell mobility[J]. PLoS One, 2014, 9(3): e92714-e92721.
[18]Lennon F E, Mirzapoiazova T, Mambetsariev B, et al. The Mu Opioid Receptor Promotes Opioid and Growth Factor-Induced Proliferation, Migration and Epithelial Mesenchymal Transition (EMT) in Human Lung Cancer[J]. PLoS One, 2014, 9(3): e91577-e91562.
[19]Zhang J, Park H S, Kim J A, et al. Flavonoids Identified from Korean Scutellaria baicalensis Induce Apoptosis by ROS Generation and Caspase Activation on Human Fibrosarcoma Cells[J]. Am J Chin Med, 2014, 42(2): 465-483.
[20]Walsh J G, Cullen S P, Sheridan C, et al. Executioner caspase-3 and caspase-7 are functionally distinct proteases[J]. Proc Natl Acad Sci USA, 2008, 105(35): 12815-12819.
[21]Ho L H, Taylor R, Dorstyn L, et al. A tumor suppressor function for caspase-2[J]. Proc Natl Acad Sci USA, 2009, 106(13): 5336-5341.
[22]Cao S, Zeng Z, Wang X, et al. Pravastatin slows the progression of heart failure by inhibiting the c-Jun N-terminal kinase-mediated intrinsic apoptotic signaling pathway[J]. Mol Med Rep, 2013, 8(4): 1163-1168.
[23]Mazumder S, Plesca D, Almasan A. Caspase-3 activation is a critical determinant of genotoxic stress-induced apoptosis[J]. Methods Mol Biol, 2008, 414(1): 13-21.
[24]Shen T, Yang C, Ding L, et al. Tbx20 functions as an important regulator of estrogen-mediated cardiomyocyte protection during oxidative stress[J]. Int J Cardiol, 2013, 168(4): 3704-3714.
The p53 signaling pathway induces osteosarcoma MG-63 cell apoptosis by inhibiting expression of gene FANCD2
XIA Peng, ZAN Chunfang, LI Jian′an, HOU Tingting, ZHANG Heng, ZHANG Jun
(DepartmentofOrthopedics,TheSecondHospitalofJilinUniversity,Changchun,Jilin130041)
KEYWORDS:fanconi anemia complementation group D2; osteosarcoma; p53; cell apoptosis; fanconi anemia; p21 protein; caspase
ABSTRACT:ObjectiveTo investigate the associated pathway between osteosarcoma (OS) and fanconi anemia (FA) and its molecular mechanism. MethodsThe siRNA for fanconi anemia complementation group D2 (FANCD2) was constructed and transfected into the osteosarcoma cell line MG-63 cells. The FANCD2 protein expression of MG-63 cells was detected by Western blot. ResultsIn MG-63 cells, expression of gene FANCD2 was inhibited, and cell apoptosis was induced. The apoptosis was mediated by the p53 signaling pathway. After FANCD2 expression was inhibited, TP53INP1 gene expression was up-regulated, phosphorylation of p53 was promoted and the p21 protein was activated, leading to cell cycle arrested in G1, and finally resulted in caspase-dependent cell apoptosis. ConclusionInhibition of gene FANCD2 expression can induce apoptosis of osteosarcoma cells.
收稿日期:2015-12-09
通信作者:张郡, E-mail: 861916323@qq. com
中图分类号:R 738.1
文献标志码:A
文章编号:1672-2353(2016)11-062-04
DOI:10.7619/jcmp.201611018