陈仕洲
(韩山师范学院数学与统计学院,广东潮州 521041)
多偏差变元p-Laplacian方程周期解的存在性
陈仕洲
(韩山师范学院数学与统计学院,广东潮州 521041)
利用重合度理论研究了一类多偏差变元的p-Laplacian方程周期解存在性问题,获得了其周期解存在性的新结论,推广和改进了已有文献中的相关结论.
偏差变元;存在性;泛函微分方程;周期解;重合度理论
由于p-Laplacian方程具有较广泛的应用背景,因此一直受到人们极大的关注,也取得了许多很好的成果[1-10].但针对具有多偏差变元高阶p-Laplacian方程周期解存在性研究则不多,最近文[5]、[6]和文[7]分别研究了具有两个偏差变元方程
[1]GAINES R E,MAWHIN J L.Coincidence degree and nonlinear differential equations[M].Berlin:Springer-Verlag,1977:95-169.
[2]黄先开,向子贵.具有时滞的Duffing型方程的2π周期解[J].科学通报,1994,39(3):201-203.
[3]李永昆.具偏差变元的Lienard型方程的周期解[J].数学研究与评论,1998,18(4):565-570.
[4]陈仕洲.具偏差变元高阶Lienard型方程周期解存在性[J].纯粹数学与应用数学,2006,22(1):108-110.
[5]朱宏伟,王梅.具有两个偏差变元的广义Lienard型方程周期解存在性[J].青岛大学学报:自然科学版,2011,22(1):5-9.
[6]陈世哲,陈仕洲.具有两个偏差变元高阶中立型微分方程的周期解存在唯一性[J].科学技术与工程,2012(11):11-15.
[7]YANG Xiaojing,KIM Yong-In,LO Kueiming.Periodic solutions for a generalized p-Laplacian equation[J].Applied Mathematics Letters,2012,25:586-589.
[8]LI J W,WANG G Q.Sharp inequalities for periodic functions[J].Applied Mathematics E-Notes,2005(5):75-83.
[9]PENG Lequn,LIU Bingwen,ZHOU Qiyuan.Periodic solutions for a kind of Rayleigh equation with two deviating arguments [J].Journal of the Franklin Institute,2006,343(7):676-687.
[10]张志戎,鲁世平.一类具偏差变元高阶p-Laplace微分方程的周期解[J].吉林大学学报:理学版,2011,49(1):71-75.
Existence of Periodic Solutions for a Kind of p-Laplacian Equation with Deviating Arguments
CHEN Shi-zhou
(School of Mathematics and Statistics,Hanshan Normal University,Chaozhou,Guangdong,521041)
By using the theorem of coincidence degree,existence of periodic solutions for a kind of p-Laplacian equation with deviating arguments is studied.Some new results for the existence of periodic solutions are obtained,which extend and improve the related reports in the literatures.
deviating argument;existence;functional differential equation;periodic solution;coincidence degree
O175.12
A
1007-6883(2015)06-0014-07
责任编辑 朱本华
2015-10-15
广东省高等教育教学改革项目(项目编号:GDJG20142396),韩山师范学院理科团队项目(项目编号:LT201202).
陈仕洲(1959-),男,广东汕头人,韩山师范学院数学与统计学院副教授.