刘桂清, 严 盈, 王玉生, 张桂芬, 万方浩,5*
1中国农业科学院植物保护研究所,植物病虫害生物学国家重点实验室,北京100193; 2广东省昆虫研究所,
广东省野生动物保护和利用公共实验室,广东省农业害虫综合治理重点实验室,广东 广州 510260;
3Department of Entomology, North Carolina State University, Campus Box 7613, Raleigh, NC 27695-7613,
USA; 4Genetic Engineering and Society Center and W.M. Keck Center for Behavioral Biology,
North Carolina State University, Raleigh, NC 27695-7613, USA;
5青岛农业大学农学与植物保护学院,山东 青岛 266109
昆虫种群遗传控制技术中启动子的研究
刘桂清1,2, 严盈1,3,4, 王玉生1, 张桂芬1, 万方浩1,5*
1中国农业科学院植物保护研究所,植物病虫害生物学国家重点实验室,北京100193;2广东省昆虫研究所,
广东省野生动物保护和利用公共实验室,广东省农业害虫综合治理重点实验室,广东 广州 510260;
3Department of Entomology, North Carolina State University, Campus Box 7613, Raleigh, NC 27695-7613,
USA;4Genetic Engineering and Society Center and W.M. Keck Center for Behavioral Biology,
North Carolina State University, Raleigh, NC 27695-7613, USA;
5青岛农业大学农学与植物保护学院,山东 青岛 266109
摘要:利用昆虫遗传转化技术对害虫进行遗传控制是害虫防治研究的新方向,该技术具有物种特异、防效高且对环境友好的特点。启动子是基因表达调控的重要元件,选择合适的启动子是外源基因高效、准确表达的关键,对获得高效、稳定的遗传修饰昆虫品系至关重要。本文简要介绍了昆虫基因启动子的结构特征,重点描述了昆虫种群遗传防治中组成型启动子、性别和组织特异型启动子、特定发育时期启动子和诱导型启动子的研究和应用概况,并对这几类启动子在害虫遗传控制中的应用前景进行了展望。
关键词:遗传防治; 昆虫不育技术; 遗传转化; 组成型启动子; 特异性启动子; 诱导型启动子
Insect gene promoters used in insect population genetic control
Gui-qing LIU1,2, Ying YAN1,3,4, Yu-sheng WANG1, Gui-fen ZHANG1, Fang-hao WAN1,5*
1StateKeyLaboratoryforBiologyofPlantDiseasesandInsectPests,InstituteofPlantProtection,ChineseAcademyofAgricultural
Sciences,Beijing100193,China;2GuangdongKeyLaboratoryofIntegratedPestManagementinAgriculture,GuangdongPublic
基因的表达调控是分子生物学领域的热门课题,可以分为转录水平调控、转录后水平调控、翻译水平调控和蛋白质水平调控等。在特定的时间内,成千上万的真核生物基因中,只有15%左右的基因能在特定的细胞中表达有功能的RNA与蛋白质等产物(Liang & Pardee,1992)。转录水平调控被认为是基因表达最重要的调控方式之一。基因的转录受启动子和增强子等特定的顺式作用元件(Cis-acting element)和蛋白质因子等具有可扩散特性的反式作用因子(Trans-acting factor)的影响。
昆虫是地球上种类最多的物种,对昆虫基因表达调控机理进行解析有助于害虫防治策略的发展。自首例遗传转化果蝇诞生(Rubin & Spradling,1982)后,昆虫遗传转化技术成为科学家研究的热点,利用昆虫遗传转化技术获得遗传修饰品系对害虫进行遗传控制是害虫防治研究的新方向(Alphey & Andreasen,2002; Heinrich & Scott,2000; Horn & Wimmer,2003; Ogaugwuetal.,2013; Scheteligetal.,2009; Thomasetal.,2000)。对目标害虫进行遗传控制,需要将遗传修饰昆虫品系释放到野外,品系中外源基因稳定、高效且有目的性地表达至关重要,因此,选择合适的昆虫启动子是建立遗传修饰昆虫品系首先要考虑的问题。目前,关于启动子的结构及其对基因的转录调控研究已有一系列进展,许多启动子得以鉴定并应用到害虫遗传控制中。本文将重点综述启动子在昆虫遗传控制中的研究及应用概况。
启动子是指RNA聚合酶及一些反式作用因子识别并与之结合从而正确有效地起始转录的一段特异性DNA序列。真核生物有3种RNA聚合酶,每一种都有自己特定的启动子类型。RNA聚合酶Ⅰ只转录rRNA,只有一种启动子类型。RNA聚合酶Ⅱ负责蛋白质基因和部分SnRNA基因的转录,其启动子结构最为复杂,通常所说的核心启动子(Core promoter)即指RNA聚合酶Ⅱ的启动子。RNA聚合酶Ⅲ负责转录tDNA和5SrDNA,其启动子位于转录的DNA序列之内,称为下游启动子。
启动子是决定RNA聚合酶Ⅱ转录起始点和转录频率的关键元件,由多个独立的、具有特征性的核苷酸序列组成。昆虫启动子具备真核生物启动子的典型特征,其结构如下:在5′端转录起始点上游约-20~-30 bp的区域存在TATA盒(TATA-box),它对转录起始位点的定位十分重要,是绝大多数真核生物基因正确表达所必需的元件,一致序列为TATA(A/T)A(A/T)。在不含TATA box的启动子中,往往由上游启动子元件行使TATA box的功能,主要有2个部位:GC box,分布在转录起始位点上游-128~-23 bp的区域内,与转录因子的结合有关,其中常有1个以上的SP1结合位点,一致序列为GGCGGG;CAAT box,在转录起始位点上游 -159~-51 bp的区域内分布比较集中,一致序列为GG(C/A)CAATCT,普遍存在于生物体中,与转录起始频率有关(Weaver,2002)。
启动子具有如下特征:(1) 序列特异性,在启动子的DNA序列中,通常含有几个保守的序列框,序列框中碱基的变化会导致转录启动滞后和转录速度减慢;(2) 方向性,启动子是一种有方向性的顺式调控元件,在正反2种方向中只有一种具有启动功能;(3) 位置特性,启动子只能位于所启动转录基因的上游或基因内的前端;(4) 种属特异性,原核生物的不同种、属,真核生物的不同组织都具有不同类型的启动子。但一般来说, 亲缘关系越近的2种生物,其启动子通用的可能性也越大(吴乃虎,2001; 夏江东等,2006)。
启动子按其功能及作用方式可分为3类:组成型启动子、特异型启动子和诱导型启动子,但在某些情况下,一种类型的启动子会兼有其他类型启动子的特性。下面将举例说明这几类启动子的特性及其在昆虫遗传控制中的应用,并对昆虫遗传控制技术中应用的启动子及其启动的外源基因表达的遗传修饰昆虫进行总结(表1)。
组成型启动子控制外源基因的表达大体恒定在一定水平,该类启动子具有启动效率高、甲基化程度相对较低和遗传性状稳定等特点,是基因工程中应用最早、最为广泛的一类启动子。组成型启动子在遗传控制技术中的应用主要体现在以下3方面:(1)基因防治,由家蚕核型多角体病毒(Bombyxmorinucleopolyhedrovirus,Bm-NPV)引起的家蚕血液型脓病是对养蚕业危害最为严重的病害之一,该病传染力极强,难以控制。利用昆虫杆状病毒极早期蛋白基因immediateearly(ie1)启动子介导对Bm-NPV具有很强抑制作用的家蚕脂肪酶1 (Bmlipase-1)的增量表达,获得提高宿主对疾病抵抗力的家蚕品系(Jiangetal.,2012);(2)遗传转化辅助质粒helper的构建,能提高转座酶的瞬时表达水平,对提高遗传转化效率十分有效(Kapetanakietal.,2002),ie1基因启动子在增强子hr5的协同作用下能高效表达转座酶基因,提高转座子piggyBac的转座活性,广泛用于遗传转化体系辅助质粒的构建(王娜等,2010);(3)标记遗传修饰昆虫,由于组成型启动子高效、稳定表达靶标基因的特性,被广泛用于启动EGFP、DsRed等荧光蛋白的表达。这里以多聚泛素基因polyubiquitin(PUb)启动子启动DsRed在遗传修饰斑翅果蝇DrosophilasuzukiiMatsumura中表达为例,说明组成型启动子的作用机制。
表1 昆虫遗传控制中的启动子应用概况
2.1.1PUb启动子作用机制泛素(Ubiquitin)是一种由76个氨基酸的氨基和羧基缩合而成的小分子蛋白,相对分子质量8.6 kD,最早从牛胸腺中分离得到,几乎在所有的真核生物中都极其保守。根据编码泛素前体蛋白质的差异可分为多聚泛素基因(polyubiquitin)和泛素延伸基因(ubiquitinextension)。泛素基因在昆虫中肠、脂肪体、马氏管和飞行肌等组织中高水平表达,参与调控昆虫生命活动的各个过程(Barrioetal.,1994)。泛素基因启动子的结构一般包括几个特定的基序(Sequence motifs),+l处为转录起始位点(帽子位点),一般为A,两边通常为嘧啶碱基;以-25位为中心的区域富含AT序列,是启动子主要的功能性成分,可能通过一些调节蛋白直接或间接作用来控制RNA聚合酶的活性,从而特异性地转录出一定量的mRNA;G 框位于泛素基因启动子-96 bp位置 ,一致序列为CACGTG,是高度保守的转录元件之一。目前,研究所知的多数泛素基因的起始转录区上游都有一段内含子序列,位于转录起始位点至翻译起始密码子之间,对目的基因的表达具有较大促进作用(Andersonetal.,2010)。
2.1.2PUb启动子应用实例斑翅果蝇,又称铃木氏果蝇,寄主范围广,危害成熟或即将成熟的樱桃、桃、欧洲李、葡萄、草莓、树莓、蓝莓、柿子和番茄等,幼虫在果实内取食,给果园造成严重损失。该虫1916年在日本山梨县首先发现,20世纪80年代在美国夏威夷定殖,传播速度非常快,目前在美洲、欧洲、非洲和亚洲等国均有发现,已成为一种世界性农业害虫(Hauser,2011)。除加强对该虫的检疫外,利用昆虫遗传转化技术对该虫进行遗传控制也是一种有效的预防或根除该虫的方法。目前,美国北卡罗莱拉州立大学已经获得了遗传修饰斑翅果蝇(图1),Pub启动子调控DsRed荧光蛋白在斑翅果蝇整个虫体均有表达,而不是局限在某个组织表达。Schetelig & Handler (2013)利用Pub启动子调控EGFP荧光蛋白的表达,获得在整个虫体均能检测到绿色荧光的遗传修饰斑翅果蝇。
图1 多聚泛素基因启动子Pub驱动DsRed表达的遗传修饰斑翅果蝇
在组织特异启动子调控下,基因的表达往往只发生在某些特定的器官或组织部位,表现出发育调节的特性。应用昆虫遗传转化技术建立遗传修饰昆虫品系不仅能提高现有的害虫控制方法,也有利于开发出新的害虫控制方法。利用性别和组织特异启动子启动外源基因的目的性表达是这项技术得以成功的关键因素之一(Handler,2002),如昆虫不育技术中遗传定性品系、雄性不育和精子荧光标记品系的开发。下面以精子荧光标记品系的建立为例,说明组织特异启动子的作用机制。
2.2.1精巢特异β2-tubulin启动子作用机制精巢特异表达基因β2-tubulin最早在黑腹果蝇Drosophilamelanogaster(Meigen) 中分离并鉴定,该基因仅在幼虫和成虫精子形成阶段发生作用,特别是其基因丝功能依赖C-端尾氨基酸基序是该基因区别保守的tubulin家族其他成员的典型特征(Hoyleetal.,1995; Raffetal.,2008)。继黑腹果蝇之后,该基因陆续在美洲烟夜蛾Heliothisvirescens(Fabricius) (Davis & Miller,1988)、斑须按蚊AnophelesstephensiListon (Catterucciaetal.,2005)、埃及伊蚊Aedesaegypti(L.) (Smithetal.,2007)、地中海实蝇Ceratitiscapitata(Wiedemann) (Scolarietal.,2008),以及加勒比按实蝇Anastrephasuspensa(Loew)、墨西哥按实蝇Anastrephaludens(Loew)和桔小实蝇Bactroceradorsalis(Hendel) (Zimowskaetal.,2009)等昆虫中被分离得到。
在果蝇中,精巢特异表达基因β2-tubulin启动子启动外源基因在精巢特异表达。启动子删减试验结果表明,该基因启动子转录位点上游53 bp及下游23 bp序列足以调控外源基因在精巢的准确转录。体外突变试验表明,一个在海德氏果蝇蝇Drosophilahydei(Sturtevant)和黑腹果蝇中保守的14 bp基序ATCGYAGTAGYCTA是控制β2-tubulin启动子精巢特异表达的唯一元件(Michielsetal.,1989)。
2.2.2精巢特异β2-tubulin启动子应用实例近年来,利用β2-tubulin启动子驱动荧光蛋白EGFP或DsRed已在斑须按蚊 (Catterucciaetal.,2005)、埃及伊蚊 (Smithetal.,2007)、地中海实蝇(Scolarietal.,2008)和加勒比按实蝇(Zimowskaetal.,2009)的精巢中表达,并成功建立了精子荧光标记品系。以加勒比按实蝇为例,精子荧光标记品系雄虫精巢和与荧光标记雄虫交配后的雌虫受精囊中均能检测到荧光蛋白的表达(图2,Zimowskaetal.,2009)。精子荧光标记品系的应用主要体现在以下3个方面:(1) 性别分离,借助识别不同荧光的分拣机分离雌、雄虫,目前已开发的机械光学的荧光分拣机(COPOS,Union Biometrica)可以用于分离精子荧光标记品系的雌、雄幼虫,已被成功用于分拣冈比亚按蚊雄虫(Maroisetal., 2012);(2)田间监测,替代传统的荧光粉标记方法,提高了SIT监测的准确性和效果;(3)为繁殖生物学研究提供技术手段,而且精子荧光标记有利于研究精子转移、储存、使用和竞争等繁殖生物学的相关内容,为更好地防治害虫提供理论依据。
图2 β2-tubulin启动子驱动德克萨斯红色荧光在加勒比按实蝇雄虫精巢特异表达
Windbichleretal.(2008)利用β2-tubulin启动归位核酸内切酶I-PpoI的表达,由于I-PpoI能高度特异地靶定于X染色体连锁的28S核糖体基因重复序列,而当同源染色体中的一条具有归位核酸内切酶时,归位核酸内切酶将切割另一条染色体,并以前者为模板进行复制,在冈比亚按蚊AnophelesgambiaeGiles的精子发生时切割X染色体,当其转入胚胎时还能切割母系来源的X染色体,导致后代雌虫在胚胎期死亡,产生全部为携带归位核酸内切酶的雄蚊。
2.2.3组织特异启动子的应用进展近年来,组织特异启动子的分离与鉴定取得了一定进展,分别体现在卵巢、脂肪体、中肠和唾液等组织中多种特异表达启动子的鉴定与应用上。例如,黑腹果蝇中有3种卵黄蛋白基因只在雌虫脂肪体和卵巢滤泡细胞中表达(Brennanetal.,1982; Isaac & Bownes,1982)。Søndergaardetal.(1995)通过缺失卵黄原蛋白Vitellogenin启动子(Vg)启动报告基因表达,构建转基因果蝇的方法,鉴定了卵黄原蛋白基因启动子中与营养响应相关的调控区域。Heinrich & Scott(2000)和 Thomasetal.(2000)在黑腹果蝇中成功建立了利用卵黄蛋白yolk protein基因yp3和yp1启动子驱动致死基因只在雌虫中条件性表达的遗传定性系统 。Kokozaetal. (2000)利用埃及伊蚊的雌性特异卵黄原蛋白Vitellogenin启动子(Vg)调控防御素defensins A的表达,培育的埃及伊蚊通过吸血激活防御素表达,吸血24 h后防御素即在该蚊虫脂肪体中高水平表达,而由于防御素具有杀灭细菌及潜在的抗疟原虫作用,所以培育的埃及伊蚊可以通过干扰病原体的传播有效地阻断蚊媒病的扩散。继此之后,越来越多物种的雌性特异表达基因被分离,主要包括卵黄蛋白Vitellogenins (Rina & Savakis,1991)、绒毛膜蛋白Chorion (Vlachouetal.,1997; Vlachou & Komitopoulou,2001)和抗细菌多肽Ceratotoxins (Marchinietal.,1997; Rosettoetal.,2000),但这些基因的启动子和调控元件尚有待进一步鉴定。
脂肪体是营养和能量的储存及供给中心,又是体内激素作用的靶组织,同时还具有贮存排泄和解毒等生理功能。在果蝇、按蚊等重要昆虫类群中,有关脂肪体特异表达基因的启动子的研究较为深入,并在基因功能与应用的研究中发挥了重要作用。如利用脂肪体高度特异的幼虫血清蛋白LSP (Larval serum protein)启动子和果蝇双元表达系统GAL4-UAS建立的脂肪体特异表达系统可广泛用于脂肪体相关基因功能研究(Lazarevaetal.,2007)。在雄虫脂肪体中,特异表达的雄性特异血清蛋白MSSP (Male-specific serum protein)被分离(Christophidesetal.,2000a),地中海实蝇中有5种MSSP被分离,其中最主要的2种是MSSP-α和MSSP-β的二聚体多肽,其他的是MSSP-α和MSSP-β的均质或异质聚体多肽(Thymianouetal.,1995)。MSSP-α2基因的2个启动子片段α2PS和α2PL驱动目的基因如半乳糖苷酶基因LacZ,仅在雄虫脂肪体表达,α2PL的活性强于α2PS,这2种启动子可用于构建基于乙醇脱氢酶的遗传性别区分品系(Christophidesetal.,2001; Komitopoulouetal.,2004)。而MSSP-β2则驱动目的基因在雌、雄虫中肠组织中的特异表达(Christophidesetal.,2000b)。
中肠是昆虫重要的免疫组织器官,研究中肠特异启动子对揭示中肠特异表达基因表达调控机理、免疫应答和应用研究具有重要意义。Abrahametal.(2005)利用冈比亚按蚊围食膜基质蛋白Peritrophin-1启动子(Aper1)驱动磷脂酶Phospholipase A2 (PLA2)在中肠特异表达,导致疟原虫的卵囊形成减少约80%。Itoetal.(2002)利用斑须按蚊中肠特异的羧肽酶carboxypeptidase启动子(CP)驱动唾腺和中肠结合多肽(SM1)表达,该种多肽与中肠结合,使疟原虫失去生存环境,从而阻断其传播。
此外,一些唾液特异表达基因如maltase-likeI(malI)、mpyrase(mpy)、30Ka和30Kb的启动子亦被分离鉴定(Coatesetal.,1999; Mathuretal.,2010),利用30Kb启动子驱动Membranes no protein (Mnp)在中肠特异表达,能明显降低埃及伊蚊经唾液和唾腺感染的登革热病毒的流行及其致病强度(Mathuretal.,2010)。
特定发育时期表达的启动子是指在昆虫生长发育某个阶段特异表达基因的启动子。应用广泛的特定发育时期启动子包括胚胎囊胚层细胞分化基因nullo和serendipityα(sryα)启动子以及生殖细胞特异表达基因nanos和vasa启动子。nullo和serendipityα基因是果蝇胚胎时期表达的基因(Hunteretal.,2002; Ibnsoudaetal.,1993),这2个基因编码的微丝网络结构成分能促进胚胎囊胚层细胞的分化(Ibnsoudaetal.,1993)。Horn & Wimmer(2003)利用这2个基因的启动子驱动促细胞凋亡基因hid(Headinvolutiondefective)在胚胎期大量表达,通过四环素抑制致死系统控制hid蛋白条件性地表达,建立了果蝇胚胎致死系统。Scheteligetal.(2009)通过分离地中海实蝇内源sryα启动子,该系统被成功转移到地中海实蝇,建立地中海实蝇胚胎致死系统。之后,Ogauguwuetal.(2013)和 Schetelig & Handler(2012)通过将该系统与性别特异剪切系统结合,成功建立了地中海实蝇和加勒比按实蝇雌性胚胎期特异致死系统。而生殖细胞特异表达基因nanos和vasa启动子被认为在生殖不育品系的建立中有望得到应用(Adelmanetal.,2007; Papathanosetal.,2009)。
2.3.1Nanos基因启动子作用机制Nanos基因最早在果蝇中发现,是一种母性效应基因。该基因编码一种RNA结合蛋白,这种蛋白与pumilioRNA结合蛋白相互作用形成一种核糖核蛋白复合物,一起抑制母源hunchbackmRNA的翻译,从而调控果蝇胚胎后腹部细胞的分化。进一步的研究表明,nanos基因的缺失将使果蝇不能形成性腺,从而产生异常生殖细胞。Nanos启动子转录起始位点上游 -108 bp~+97 bp为增强子区,-108 bp~+97 bp间的启动子片段足以调控外源基因GFP在果蝇生殖细胞中的表达(Alietal.,2010)。
2.3.2Nanos基因启动子应用实例Nanos基因在地中海实蝇、冈比亚按蚊、斑须按蚊和埃及伊蚊中的表达模式与果蝇相同,主要在胚胎早期及雌虫发育的卵母细胞中积累(Calvoetal.,2005; Ogaugwuetal.,2013)。Adelmanetal.(2007)利用nanos基因的启动子区域和非编码区驱动外源mariner转座酶MosI编码DNA在埃及伊蚊雌虫生殖细胞特异转录,MosI mRNA在发育中的卵母细胞中积累并定位于早期发育胚胎的后极孔,并能再次将MosI整合到埃及伊蚊基因组,表明nanos启动子有望成为基于转座元件的基因驱动系统(TE-based gene driver system),利用转座子技术建立抗登革热病毒的遗传修饰蚊并用于蚊虫种群替代防控策略具有较大的应用潜力。最新的基因组编辑技术CRISPR/CAS 9,利用nanos启动子在生殖细胞中过表达了cas9酶,提高和优化了果蝇中基因组编辑的效率(Kondoetal.,2013)。
诱导型启动子通常仅在特定环境条件下表现活性,这些条件可以是物理的、化学的或生物的。诱导型启动子往往具有增强子、沉默子或类似功能的序列结构,感受诱导的序列都具有明显的专一性。诱导型启动子通常在某些特定的物理或化学因素的刺激下,可大幅度提高基因的转录水平,如果蝇热激蛋白启动子能够进行热激调节,其中hsp70启动子的热激活性最强,使用也最为广泛。
2.4.1热激蛋白基因启动子作用机制Nover(1987)、 Pelham & Bienz(1982)和 Topoletal.(1985)通过比较果蝇的hsp83、hsp70、hsp68、hsp27、hsp26、hsp23和hsp22的启动子序列,发现有一个14 bp的回文序列,其中10 bp为高度保守,其序列为CTnGAAnnTTCnAG,称为HSE (Heat shock element)元件,能够进行热激调控,如果只配对4或5个碱基,则序列没有热激活性,而l或2个碱基的错配可以被容忍,没有特定的碱基是非必需的。HSE中存在HSF1 (Heat shock factor l) (Morimoto,1993)、CHBF (constitutive HSE-binding factor) (Mosseretal.,1988)和Ku因子(Turturici,2009)等的结合位点,这也是HSE序列能够实现热激调节的原因。
2.4.2Hsp70启动子应用实例果蝇hsp70启动子应用非常广泛,常被用于驱动外源基因在其他昆虫中的条件性表达(Fuetal.,2007; Gongetal.,2005),也用于构建遗传转化体系的辅助质粒,驱动Minos和piggyBac等转座酶基因的表达,提高转座活性,其有效性已在蝇类和蚊虫等的转化中得以证明(Catterucciaetal.,2000; Ogaugwuetal.,2013)。研究表明,该启动子在异质系统中能发挥作用(Atkinson & O′Brochta,1992; Bergeetal.,1985; Bienz & Pelham,1982; Voellmy & Rungger,1982),但在非果蝇昆虫中的表达活性相对较低(Atkinson & O′Brochta,1992; Bergeetal.,1985),若需要获得该基因的高表达,则需要分离hsp70的同源类似物启动子。Conchaetal.(2012)分离并鉴定铜绿蝇hsp83、hsp70、hsp23和hsp24等基因,hsp83在铜绿蝇各个发育阶段均高水平表达,热激后,其表达水平提高2~10倍,而hsp70的表达水平相对较低,但热激后,其表达水平有很大的提高,约230~770倍,hsp23和hsp24的表达水平则在各个发育阶段有较大差异,该研究结果为组成型或条件性诱导基因的表达,建立遗传修饰铜绿蝇奠定基础。
启动子是基因转录调控的重要元件,决定了mRNA的时空转录,从而实现生物的有序分化发育过程。研究启动子的结构和功能,对于基因表达模式和基因调控网络等方面十分重要。根据组成型启动子、组织特异性启动子和诱导型启动子的特性和作用机制的不同,各类启动子在昆虫遗传控制技术中的应用也有所差别。组成型基因多为管家基因,该类启动子已被证明能有效地用于驱动标记基因如荧光蛋白的表达,该类启动子持续稳定地高水平表达使遗传修饰昆虫的筛选工作更加切实可行。性别、组织特异性启动子能实现外源效应基因仅在单一性别或目的组织中表达,实现遗传控制害虫特异性致死或将致死基因特异性传递。诱导型启动子可以条件性地控制外源效应基因的表达。根据昆虫遗传控制策略的不同,选择性地选择合适的启动子构建外源基因驱动系统是非常重要的。随着昆虫启动子分离、鉴定工作的进一步完善发展,更多适合的启动子将会被应用到昆虫遗传控制技术中的驱动系统,促进害虫遗传防治技术的发展。
参考文献
王娜, 杜希宽, 蒋明星, 张传溪, 程家安. 2010. 家蚕BmN细胞中8种启动子的活性比较及利用hr5-IE1启动子实现EGFP的稳定表达. 昆虫学报, 53(3): 279-285.
吴乃虎, 2001. 基因工程原理. 北京: 科学出版社.
夏江东, 程在全, 吴渝生, 季鹏章. 2006. 高等植物启动子功能和结构研究进展. 云南农业大学学报, 21(1): 7-14.
Abraham E G, Donnelly-Doman M, Fujioka H, Ghosh A, Moreira L and Jacobs-Lorena M. 2005. Driving midgut-specific expression and secretion of a foreign protein in transgenic mosquitoes withAgAper1 regulatory elements.InsectMolecularBiology, 14: 271-279.
Adelman Z N, Jasinskiene N, Onal S, Juhn J, Ashikyan A, Salampessy M, MacCauley T and James A A. 2007.Nanosgene control DNA mediates developmentally regulated transposition in the yellow fever mosquitoAedesaegypti.ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica, 104: 9970-9975.
Ali I, ur Rehman M, Rashid F, Khan S, Iqbal A, Laixin X, ud din Ahmed N and Swati A Z. 2010. Cis-regulatory elements affecting theNanosgene promoter in the germline stem cells.JournalofBiotechnology, 145: 323-329.
Alphey L S and Andreasen M. 2002. Dominant lethality and insect population control.MolecularandBiochemicalParasitology, 121: 173-178.
Anderson M A E, Gross T L, Myles K M and Adelman Z N. 2010. Validation of novel promoter sequences derived from two endogenous ubiquitin genes in transgenicAedesaegypti.InsectMolecularBiology, 19: 441-449.
Atkinson P W and O′Brochta D A. 1992. In vivo expression of two highly conservedDrosophilagenes in Australian sheep blowfly,Luciliacuprina.InsectBiochemistryandMolecularBiology, 22: 423-431.
Barrio R, del Arco A, Cabrera H L and Arribas C. 1994. Structure and expression of theDrosophilaubiquitin-80-amino acid fusion protein gene.BiochemicalJournal, 302: 237-244.
Berger E M, Marino G and Torrey D. 1985. Expression ofDrosophilahsp70-CAT hybrid gene inAedescells induced by heat shock.SomaticCellMolecularGenetics, 11: 371-377.
Berghammer A J, Klingler M and Wimmer E A. 1999. A universal marker for transgenic insects.Nature, 402: 370-371.
Bienz M and Pelham H R B. 1982. Expression of aDrosophilaheat shock protein inXenopusoocytesconserved and divergent regulatory signals.EMBOJournal, 1: 1583-1588.
Brennan M D, Weiner A J, Goralski T J and Mahowald A P. 1982. The ollicle cells are the major site of vitellogenin synthesis inDrosophilamelanogaster.DevelopmentalBiology, 89: 225-236.
Calvo E, Walter M, Adelman Z N, Jimenez A, Onal S, Marinotti O and James A A. 2005.Nanos(nos) genes of the vector mosquitoes,Anophelesgambiae,AnophelesstephensiandAedesaegypti.InsectBiochemistryandMolecularBiology, 35: 789-798.
Catteruccia F, Benton J P and Crisanti A. 2005. AnAnophelestransgenic sexing strain for vector control.NatureBiotechnology, 23: 1414-1417.
Catteruccia F, Nolan T, Blass C, Muller H M, Crisanti A, Kafatos F C and Loukeris T G. 2000. TowardAnophelestransformation: minos element activity in anopheline cells and embryos.ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica, 97: 2157-2162.
Christophides G K, Livadaras I, Savakis C and Komitopoulou K. 2000a. Two medfly promoters that have originated by recent gene duplication drive distinct sex, tissue and temporal expression patterns.Genetics, 156: 173-182.
Christophides G K, Mintzas A C and Komitopoulou K. 2000b. Organization, evolution and expression of a multi-gene family encoding putative members of the odorant binding protein family in the medflyCeratitiscapitata.InsectMolecularBiology, 9: 185-195.
Christophides G K, Savakis C, Mintzas A C and Komitopoulou K. 2001. Expression and function of theDrosophilamelanogasterADH in maleCeratitiscapitataadults: a potential strategy for medfly genetic sexing based on gene-transfer technology.InsectMolecularBiology, 10: 249-254.
Coates C J, Jasinskiene N, Pott G B and James A A. 1999. Promoter-directed expression of recombinant fire-fly luciferase in the salivary glands of Hermes-transformedAedesaegypti.Gene, 226: 317-325.
Concha C, Edman R M, Belikoff E J, Schiemann A H, Carey B and Scott M J. 2012. Organization and expression of the Australian sheep blowfly (Luciliacuprina)hsp23,hsp24,hsp70 andhsp83 genes.InsectMolecularBiology, 21: 169-180.
Davis I, Girdham C H and O′Farrell P H. 1995. A nuclear GFP that marks nuclei in livingDrosophilaembryos; maternal supply overcomes a delay in the appearance of zygotic fluorescence.DevelopmentalBiology, 170: 726-729.
Davis M T B and Miller S G. 1988. Expression of a testisβ-tubulingene inHeliothisvirescensduring spermatogenesis.InsectBiochemestryandMolecularBiology, 18: 389-394.
Fu G, Condon K C, Epton M J, Gong P, Jin L, Condon G C, Morrison N I, Dafa′alla T H and Alphey L. 2007. Female-specific insect lethality engineered using alternative splicing.NatureBiotechnology, 25: 353-357.
Fu G, Lee R S, Nimmo D, Aw D Jin L, Gray P, Berendonk T U, White-Cooper H, Scaife S, Phun H K, Marinotti O, Jasinskiene, James A A and Alphey L. 2010. Female-specific flightless phenotype for mosquito control.ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica, 107: 4550-4554.
Gong P, Epton M J, Fu G, Scaife S, Hiscox A, Condon K C, Condon G C, Morrison N I, Kelly D W, Dafa′alla T, Coleman P G and Alphey L. 2005. A dominant lethal genetic system for autocidal control of the Mediterranean fruit fly.NatureBiotechnology, 23: 453-456.
Handler A M. 2002. Prospects for using genetic transformation for improved SIT and new biocontrol methods.Genetica, 116, 137-149.
Handler A M, Allen M L and Skoda S R. 2009. Development and utilization of transgenic New World screwworm,Cochliomyiahominivorax.MedicalandMeterinaryEntomology, 23(S1): 98-105.
Handler A M and Harrell R A. 1999. Germline transformation ofDrosophilamelanogasterwith thepiggyBactransposon vector.InsectMolecularBiology, 8: 449-457.
Handler A M and Harrell R A. 2001a. Polyubiquitin-regulated DsRed marker for transgenic insects.Biotechniques, 31: 820-828.
Handler A M and Harrell R A. 2001b. Transformation of the Caribbean fruit fly,Anastrephasuspensa, with apiggyBacvector marked with polyubiquitin-regulated GFP.InsectBiochemistryandMolecularBiology, 31: 199-205.
Hauser M. 2011. A historic account of the invasion ofDrosophilasuzukii(Matsumura)(Diptera: Drosophilidae) in the continental United States, with remarks on their identification.PestManagementScience, 67: 1352-1357.
Hediger M, Niessen M, Wimmer E A, Dübendorfer A and Bopp D. 2001. Genetic transformation of the houseflyMuscadomesticawith the lepidopteran derived transposon piggyback.InsectMolecularBiology, 10: 113-119.
Heinrich J C and Scott M J. 2000. A repressible female-specific lethal genetic system for making transgenic insect strains for a sterile release program.ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica, 97: 8229-8232.
Heinrich J C, Li X, Henry R A, Haack N, Stringfellow L, Heath A and Scott M J. 2002. Germ-line transformation of the Australian sheep blowfly,Luciliacuprina.InsectMolecularBiology, 11: 1-10.
Horn C and Wimmer E. 2003. A transgene-based, embryo-specific lethality system for insect pest management.NatureBiotechnology, 21: 64-70.
Hoyle H D, Hutchens J A, Turner F R and Raff E C. 1995. Regulation ofβ-tubulinfunction and expression inDrosophilaspermatogenesis.DevelopmentalGenetics, 16: 148-170.
Hunter C, Sung P, Schejter E D and Wieschaus E. 2002. Conserved domains of the Nullo protein required for cell-surface localization and formation of adherens junctions.MolecularBiologyoftheCell, 13: 146-157.
Ibnsouda S, Schweisguth F, de Billy G and Vincent A. 1993. Relationship between expression of serendipity alpha and cellularization of theDrosophilaembryo as revealed by interspecific transformation.Development, 119: 471-483.
Isaac P and Bownes M. 1982. Ovarian and fat body vitetlogenin synthesis inDrosophilamelanogaster.EuropeanJournalofBiochemistry, 123: 527-534.
Ito J, Ghosh A, Moreira L A, Wimmer E A and Jacobs-Iorena M. 2002. Transgenic anopheline mosquitoes impaired in transmission of a malaria parasite.Nature, 417: 452- 455.
Jiang L, Wang G H, Cheng T C, Yang Q, Jin S K, Lu G, Wu F Q, Xiao Y, Xu H F and Xia Q Y. 2012. Resistance toBombyxmorinucleopolyhedrovirus via overexpression of an endogenous antiviral gene in transgenic silkworms.ArchivesofVirology, 157: 1323-1328.
Kapetanaki M G, Loukeris T G, Livadaras I and Savakis C. 2002. High frequencies ofMinostransposon mobilization are obtained in insects by using in vitro synthesized mRNA as a source of transposase.NucleicAcidsResearch, 30: 3333-3340.
Kokoza V, Abduelaziz A, Cho W L, Jasinskiene N, James A A and Raikhei A. 2000. Engineering blood meal-activated systemic immunity in the yellow fever mosquito,Aedesaegypti.ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica, 97: 9144-9149.
Komitopoulou K, Christophides G K, Kalosaka K, Chrysanthis G, Theodoraki M A, Savakis C, Zacharopoulou A and Mintzas A C. 2004. Medfly promoters relevant to the sterile insect technique.InsectBiochemistryandMolecularBiology, 34: 149-157.
Kondo S and Ueda R. 2013. Highly improved gene targeting by germline-specificCas9 expression inDrosophila.Genetics, 195: 715-721.
Labbé G M, Scaife S, Morgan S A, Curtis Z H and Alphey L. 2012. Female-specific flight-less (fsRIDL) phenotype for control ofAedesalbopictus.PLoSNeglectedTropicalDiseases, 6: e1724.
Lazareva A A, Roman G, Mattox W, Hardin P E and Dauwalder B. 2007. A role for the adult fat body inDrosophilamale courtship behavior.PLoSGenetics, 3: e16.
Liang P and Pardee A B. 1992. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction.Science, 257: 967-971.
Lorenzen M D, Brown S J, Denell R E and Beeman R W. 2002. Transgene expression from theTriboliumcastaneumPolyubiquitin promoter.InsectMolecularBiology, 11: 399-407.
Marchini D, Marri L, Rosetto M, Manetti A G and Dallai R. 1997. Presence of antibacterial peptides on the laid egg chorion of the medflyCeratitiscapitata.BiochemicalandBiophysicalResearchCommunications, 240: 657-663.
Marinotti O, Jasinskiene N, Fazekas A, Scaife S, Fu G, Mattingly S T, Chow K, Brown D M, Alphey L and James A A. 2013. Development of a population suppression strain of the human malaria vector mosquito,Anophelesstephensi.MalariaJournal, 12: 142.
Marois E, Scali C, Soichot J, Kappler C, Levashina E A and Catteruccia F. 2012. High-throughput sorting of mosquito larvae for laboratory studies and for future vector control interventions.MalariaJournal, 11: 302.
Mathur G, Sanchez-Vargas I, Alvarez D, Olson K E, Marinotti O and James A A. 2010. Transgene-mediated suppression of dengue viruses in the salivary glands of the yellow fever mosquito,Aedesaegypti.InsectMolecularBiology, 19: 753-763.
Michiels F, Gasch A, Kaltschmidt B and Renkawitz-Pohl R. 1989. A 14 bp promoter element directs the testis specificity of theDrosophilaβ2tubulingene.EMBOJournal, 8: 1559-1565.
Morimoto R I. 1993. Cells in stress-transcriptional activation of heat-shock genes.Science, 259: 1409-1410.
Mosser D D, Theodorakis N G and Morimoto R I. 1988. Coordinate changes in heat-shock element-binding activity andhsp70 gene-transcription rates in human cells.MolecularCellBiology, 8: 4716-4744.
Nover L. 1987. Expression of heat-hock genes in homologous and heterologous systems.EnzymeandMicrobialTechnology, 9: 130-144.
Ogaugwu C E, Schetelig M F and Wimmer E A. 2013. Transgenic sexing system forCeratitiscapitata(Diptera: Tephritidae) based on female-specific embryonic lethality.InsectBiochemistryandMolecularBiology, 43: 1-8.
Papathanos P A, Windbichler N, Miriam M, Burt A and Crisanti A. 2009. The vasa regulatory region mediates germline expression and maternal transmission of proteins in the malaria mosquitoAnophelesgambiae: a versatile tool for genetic control strategies.BMCMolecularBiology, 10: 65.
Pelham H R. 1982. A regulatory upstream promoter element in theDrosophilahsp70 heat-shock gene.Cell, 30: 517-528.
Pelham H R and Bienz M. 1982. A synthetic heat-shock promoter element confers heat-inducibility on the herpes simplex virus thymidine kinase gene.EMBOJournal, 1: 1473-1477.
Perera O P, Harrell I R and Handler A M. 2002. Germ-line transformation of the South American malaria vector,Anophelesalbimanus, with a piggyBac/EGFP transposon vector is routine and highly efficient.InsectMolecularBiology, 11: 291-297.
Pinkerton A C, Michel K, O′Brochta D A and Atkinson P W. 2000. Green fluorescent protein as a genetic marker in transgenicAedesaegypti.InsectMolecularBiology, 9: 1-10.
Raff E C, Hoyle H D, Popodi E M and Turner F R. 2008. Axoneme beta-tubulin sequence determines attachment of outer dynein arms.CurrentBiology, 18: 911-914.
Rina M and Savakis C. 1991. A cluster of vitellogenin genes in the Mediterranean fruit flyCeratitiscapitata: sequence and structural conservation in dipteran yolk proteins and their genes.GeneticsSocietyofAmerica, 127: 769-780.
Rosetto M, de Filippis T, Mandrioli M, Zacharopoulou A, Gourzi P, Manetti A G, Marchini D and Dallai R. 2000.Ceratotoxins: female-specific X-linked genes from the medfly,Ceratitiscapitata.Genome, 43: 707-711.
Rubin G M and Spradling A C. 1982. Genetic transformation ofDrosophilawith transposable element vectors.Science, 218: 348-353.
Sano H, Nakamura A and Kobayashi S. 2002. Identification of a transcriptional regulatory region for germline-specific expression ofvasagene inDrosophilamelanogaster.MechanismsofDevelopment, 112: 129-39.
Schetelig M F and Handler A M. 2012. A transgenic embryonic sexing system forAnastrephasuspensa(Diptera: Tephritidae).InsectBiochemistryandMolecularBiology, 42: 790-795.
Schetelig M F and Handler A M. 2013. Germline transformation of the spotted wing drosophilid,Drosophilasuzukii, with a piggyBac transposon vector.Genetica, 141: 189-193.
Schetelig M F, Caceres C, Zacharopoulou A, Franz G and Wimmer E A. 2009. Conditional embryonic lethality to improve the sterile insect technique inCeratitiscapitata(Diptera: Tephritidae).BMCBiology, 7: 4.
Scolari F, Schetelig M F, Bertin S, Malacrida A R, Gasperi G and Wimmer E A. 2008. Fluorescent sperm marking to improve the fight against the pest insectCeratitiscapitata(Wiedemann; Diptera: Tephritidae).NewBiotechnology, 25: 76-84.
Smith R C, Walter M F, Hice R H, O′Brochta D A and Atkinson P W. 2007. Testis-specific expression of theβ2-tubulinpromoter ofAedesaegyptiand its application as a genetic sex-separation marker.InsectMolecularBiology, 16: 61-71.
Søndergaard L, Mauehline D, White P E N, Wulff P and Bownes M. 1995. Nutritional response in aDrosophilayolk protein gene promoter.MolecularandGeneralGenetics, 248: 25-32.
Thomas D D, Donnelly C A, Wood R J and Alphey L S. 2000. Insect population control using a dominant, repressible, lethal genetic system.Science, 287: 2474-2476.
Thymianou S P, Chrysanthis G, Petropoulou K A and Mintzas A C. 1995. Developmentally regulated biosynthesis of two male specific serum polypeptides in the fat body of the medflyCeratitiscapitata.InsectBiochemistryandMolecularBiology, 25: 915-920.
Topol J, Ruden D M and Parker C S. 1985. Sequences required for in vitro transcriptional activation of aDrosophilahsp70 gene.Cell, 42: 527-537.
Turturici G, Geraci F, Candela M E, Cossu G, Giudice G and Sconzo G. 2009.Hsp70 is required for optimal cell proliferation in mouse A6 mesoangioblast stem cells.BiochemicalJournal, 421: 193-200.
Vlachou D, Konsolaki M, Tolias P P, Kafatos F C and Komitopoulou K. 1997. The autosomal chorion locus of the medflyCeratitiscapitata. Ⅰ. Conserved synteny, amplification and tissue specificity but sequence divergence and altered temporal regulation.Genetics, 147: 1829-1842.
Voellmy R and Rungger D. 1982. Transcription of aDrosophilaheat shock gene is heatⅡinduced inXenopusoocytes.ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica, 79: 1776-1780.
Weaver R F. 2002. 分子生物学. 2版. 北京: 科学出版社.
Windbichler N, Papathanos P A and Crisanti A. 2008. Targeting the X chromosome during spermatogenesis induces Y chromosome transmission ratio distortion and early dominant embryo lethality inAnophelesgambiae.PLoSGenetics, 4: e1000291.
Zimowska G J, Nirmala X and Handler A M. 2009. Thebeta2-tubulingene from three tephritid fruit fly species and use of its promoter for sperm marking.InsectBiochemistryandMolecularBiology, 39: 508-515.
(责任编辑:郭莹)
LaboratoryofWildAnimalConservationandUtilization,GuangdongEntomologicalInstitute,Guangzhou,Guangdong510260,
China;3DepartmentofEntomology,NorthCarolinaStateUniversity,CampusBox7613,Raleigh,NC27695-7613,USA;
4GeneticEngineeringandSocietyCenterandW.M.KeckCenterforBehavioralBiology,NorthCarolinaStateUniversity,
Raleigh,NC27695-7613,USA;5CollegeofAgricultureandPlantProtection,
QingdaoAgriculturalUniversity,Qingdao,Shandong266109,China
Abstract:Genetic control using germ-line transformation is the new trend in the research of insect pest control. It is a species-specific, highly efficient and environmental friendly pest control strategy. Gene promoter, one of the key component for gene expression regulation, is requisite for the construction of high-efficient and stable genetic modified strains for insect population genetic control. In this review, the basic structural characteristics of insect gene promoters are briefly described. The progress and application of different type promoters such as constitutive promoter, sex- and tissue-specific promoter, age-specific promoter and inducible promoter, are also introduced. Finally, the future prospect of different types of promoters used in insect population genetic control is disccused.
Key words:insect population genetic control; sterile insect technique; genetic transformation; constitutive promoter; specific promoter; inducible promoter
通讯作者*(Author for correspondence), E-mail: wanfanghao@caas.cn
作者简介:吕志创, 女, 助理研究员。 研究方向: 入侵昆虫分子生态学。 E-mail: grasslzc@163.com
基金项目:国家“973”计划项目(2009CB119200); 国家“十一五”科技支撑计划课题(2006BAD08A18); 农业部农作物病虫害疫情监测与防治项目(2003-2015); 中国农科院科技创新工程(2013-2015); 人力资源社会保障部2014年度留学人员科技活动择优资助项目
收稿日期(Received): 2014-12-16接受日期(Accepted): 2015-01-07
DOI:10.3969/j.issn.2095-1787.2015.02.005