徐明明等
摘要:目的: 探讨抑制性神经元的表达改变在FMR1基因敲除鼠癫痫发病机制的作用。方法:应用免疫组织化学染色检测2 周龄FMR1基因敲除型(KO)和同龄野生型(WT)小鼠海马抑制性神经元数目(Glutamic acid decarboxylase (GAD) and parvalbumin(PV)阳性神经元);应用Western blot法检测上述小鼠海马组织GAD和PV的含量。结果:FMR1 KO鼠和WT鼠海马GAD神经元数目的比较:FMR1 KO鼠海马GAD神经元81±20.134,WT鼠96.11±15.186,差异具有统计学意义(P=0.006);CA1区FMR1 KO鼠33.24±7.710,WT鼠40.59±5.738,差異具有统计学意义(P=0.001);CA3区FMR1 KO鼠30.94±11.028,WT鼠36.06±6.432差异具有统计学意义(P=0.041);DG区FMR1 KO鼠17.82±5.703, WT鼠21.44±3.245,差异不具有统计学意义(P=0.0669); FMR1 KO鼠和WT鼠的GAD65.67的蛋白水平的比较,GAD65: t=5.152,P=0.000;GAD67: t=4.723,P=0.000, FMR1 KO鼠的GAD65.67的蛋白水平均高于WT鼠。FMR1 KO鼠和WT鼠海马PV阳性神经元数目的比较:FMR1 KO鼠和WT鼠海马GAD神经元数目的比较:FMR1 KO鼠海马PV阳性神经元77±16.321,WT鼠90.13±13.126,差异具有统计学意义(P=0.005);CA1区FMR1 KO鼠24.13±6.635,WT鼠35.63±6.635,差异具有统计学意义(P=0.002);CA3区FMR1 KO鼠25.94±9.123,WT鼠30.12±5.357差异具有统计学意义(P=0.038);DG区FMR1 KO鼠14.73±4.473, WT鼠16.12±3.149,差异不具有统计学意义(P=0.068); KO小鼠海马中PV表达量分别较WT小鼠减少,KO鼠0.132±0.011,WT鼠0.155±0.013,差异有统计学意义(P=0.0386)。结论:FMR-1KO小鼠海马抑制性神经元数目的减少以及PV蛋白表达减低,可能是诱发该种小鼠癫痫发病率高重要原因。KO鼠GAD表达增高,考虑和KO鼠代偿性增高有关。
关键词 :脆性X综合征;抑制性神经元;癫痫;谷氨酸脱羧酶; 小白蛋白
中图分类号:R54 文献标识码: A 文章编号:
深圳市科技计划项目 项目编号 201303187 FMR1基因敲除鼠PV阳性神经元变化及其癫痫发病机制的研究
Abstract : Objective.This study focused on the expression differences of Glutamic acid decarboxylase (GAD) and parvalbumin(PV) expression between FMR1KO and wild-type (WT) mice in hippocampus. Methods. 2 weeks mice were randomly obtained for immunohistochemistry and Western blotting to detect the expression.Results Number of GAD interneurons in hippocampus : FMR1 KO mice81±20.134,WT mice 96.11±15.186 (P=0.006); CA1: FMR1 KO mice33.24±7.710, WT mice 40.59±5.738(P=0.001); CA3: FMR1 KO mice 30.94±11.028,WT mice 36.06±6.432 (P=0.041); DG: FMR1 KO mice 17.82±5.703, WT mice 21.44±3.245 (P=0.0669); The expressions of GAD65 and GAD67 were significantly increased in the hippocampus tissues in FMR-1KO when compaired to that in WT mice (P=0.000).Number of parvalbumin(PV)-expressing interneuron in hippocampus : FMR1 KO mice 77±16.321,WT mice 90.13±13.126 (P=0.005); CA1: FMR1 KO mice 24.13±6.635, WT mice 35.63±6.635(P=0.002); CA3: FMR1 KO mice 25.94±9.123,WT mice 30.12±5.357 (P=0.038); DG: FMR1 KO mice14.73±4.473, WT mice16.12±3.149 (P=0.068); The expressions of PV were reduced in the hippocampus tissues in FMR-1KO when compaired to that in WT mice (P=0.0386).Conclusion The decreased number of inhibitory interneurons in the hippocampus of FMR1 KO mice demonstrates that interneurons is possible to play an critical role in increased susceptibility to epileptic seizures of FXS.Increased expression of GAD of KO mice is compensatory.
Keywords:Fragile X syndrome; interneurons; Epilepsy; Glutamic acid decarboxylase
脆性X综合征FXS(Fragile X syndrome,FXS)是最常见的遗传性智力低下疾病之一,它是一种外显率不完全的X-连锁遗传病(1),最初由细胞遗传学检查发现X染色体上存在脆性位点而得名,男性发病率明显高于女性,临床突出表现为中至重度的智力发育障碍,脸狭长及下颌突出等典型面部特征,以及青春期后的巨大睾丸,同时伴有适应能力下降、孤独样症状等异常行为,患者可出现癫痫发作,探索其发病机制及药物治疗途徑是目前国际上研究的热点问题。[1]FMR1 KO鼠的许多行为学表现与脆性X综合征患者非常相似,最明显的包括自发活动增加、旷场习惯能力下降、听源性惊厥易感性增强 [2]。神经环路中兴奋性与抑制性功能的协调平衡对维持正常大脑的整体功能是必要的,GAD神经元抑制系统的减弱与癫痫相关[3]。Leah Selby等在一周岁KO鼠中研究发现GABA能中间神经元的变化[4]。本研究拟通过研究抑制性神经元的改变,为脆性X综合征的癫痫发病机制提供进一步的依据,为人们认识脆性X综合征的发病机制打下基础。
1 材料与方法
1.材料
1.1 实验动物及分组
FMR1基因敲除型(KO)纯合子(-/-)及其野生型(WT)纯合子(+/+)FVB近交系小鼠由荷兰伊拉斯塔斯大学细胞生物学及遗传学研究中心Oostra BA 教授惠赠。实验前取鼠尾巴进行PCR和Western Blot进行基因型鉴定。
2.方法
2.1免疫组化漂浮法:将FVB小鼠350mg/kg水合氯醛麻醉后,4%多聚甲醛灌注固定脑组织,常规脱水、冰冻切片,漂洗盒孔内注入PBS,各取保存于PBS中的切片6-9片放入孔内。用PBS换洗3次,每次5分钟。每片加1滴(50ul)过氧化物酶阻断剂(S-P试剂盒中A液),室温下置振荡器振荡孵育30分钟后,用PBS换洗3次。每片加1滴(50ul)正常非特异性血清(S-P试剂盒中B液),室温下置振荡器振荡孵育60分钟后,每片加100ul 一抗( GAD 1∶400 PV1:8000以0.2%Triton液稀释) ,室温下振荡器振荡60分钟后放入4℃冰箱中,孵育过夜。PBS冲洗7次,吸干孔内残余液体,每片加1滴(50ul)生物素标记的二抗(C液),室温下振荡孵育60分钟。PBS冲洗3次,吸干孔内残余液体,每片加1滴(50ul)链霉菌抗生物素-过氧化物酶溶液(D液),室温下振荡器振荡孵育30分钟。PBS冲洗3次,吸干孔内残余液体,DAB液显色,显微镜下观察显色结果,3-5分钟用PBS液终止反应,PBS换洗3次,将切片贴于明胶处理过的载玻片上,自然晾干,脱水透明,中性树胶封片。空白对照实验:用PBS代替一抗,其余步骤不变。
2.2 Western Blot法:用RIPA常规提取皮层、海马组织的蛋白。15%变性聚丙烯酰胺分离凝胶分离(120V,90分钟),采用PVDF膜恒压100V转膜60分钟, 5%脱脂奶粉溶液封闭膜1h,加入TTBS稀释的一抗(FMRP 1:1000;PV 1:16000;GAD 1:32000;抗β-actin抗体1:2000),4℃孵育轻摇过夜。加入二抗(抗鼠抗体1:4000,抗兔抗体1:4000),室温下与膜孵育1h(轻摇),ECL发光液孵育,x光胶片曝光显影并进行扫描。
3.数据采集和统计
使用SPSSl7.0 for Windows软件包(SPSS lnc.,Chicago,IL,USA)进行统计分析,两样本均数比较采用t检验。以P<0.05具有统计学意义。
2 结果
2.1 FMR1 KO鼠海马GAD神经元数目的变化
FMR1 KO鼠和WT鼠海马GAD神经元数目的比较:FMR1 KO鼠海马GAD神经元81±20.134,WT鼠96.11±15.186,差异具有统计学意义(P=0.006);CA1区FMR1 KO鼠33.24±7.710,WT鼠40.59±5.738,差异具有统计学意义(P=0.001);CA3区FMR1 KO鼠30.94±11.028,WT鼠36.06±6.432差异具有统计学意义(P=0.041);DG区FMR1 KO鼠17.82±5.703, WT鼠21.44±3.245,差异不具有统计学意义(P=0.0669)(见表1)
表1 FMR1 KO和WT鼠海马GAD神经元数目比较
2.2 海马组织GAD蛋白表达的变化
WT鼠和FMR1 KO鼠海马组织GAD蛋白的表达量
FMR1 KO鼠和WT鼠的GAD65.67的蛋白水平的比较,GAD65: t=5.152,P=0.000;GAD67: t=4.723,P=0.000, FMR1 KO鼠的GAD65.67的蛋白水平均高于WT鼠。(见表2 图1)
表2 WT鼠和FMR1 KO鼠海马组织GAD蛋白的表达量
FMR1 KO鼠的GAD65和GAD67的蛋白水平均高于WT鼠,*P<0.05
图1 WT鼠和FMR1 KO鼠GAD65 67蛋白印迹
2.3 KO与WT小鼠脑组织PV阳性中间神经元数的表达
FMR1 KO鼠和WT鼠海马PV阳性神经元数目的比较:FMR1 KO鼠和WT鼠海马GAD神经元数目的比较:FMR1 KO鼠海马PV阳性神经元77±16.321,WT鼠90.13±13.126,差异具有统计学意义(P=0.005);CA1区FMR1 KO鼠24.13±6.635,WT鼠35.63±6.635,差异具有统计学意义(P=0.002);CA3区FMR1 KO鼠25.94±9.123,WT鼠30.12±5.357差异具有统计学意义(P=0.038);DG区FMR1 KO鼠14.73±4.473, WT鼠16.12±3.149,差异不具有统计学意义(P=0.068)(见表3)
3、Jiao Y, Zhang C, Yanagawa Y, Sun QQ. Major effects of sensory experiences on the neocortical inhibitory circuits. J Neurosci. 2006;26:8691-701.
4、Leah Selby, Chunzhao Zhang, and Qian-Quan Sun. Major Defects in Neocortical GABAergic Inhibitory Circuits in Mice Lacking the Fragile X Mental Retardation Protein. Neurosci Lett, 2007,412:227–232.
5、Musumeci SA, Hagerman RJ, Ferri R,. Epilepsy and EEG findings in males with fragile X syndrome. Epilepsia, 1999,40:1092-9.
6、Incorpora G, Sorge G, Sorge A, Epilepsy in fragile X syndrome. Brain Dev, 2002,24:766-9.
7、易詠红 陆雪芬 廖卫平. 脆性X 染色体综合征临床与脑电图的研究.中华神经科杂志, 1997,30:297-300.
8、Qiu LF, Lu TJ, Hu XL. Limbic epileptogenesis in a mouse model of fragile X syndrome. Cereb Cortex, 2009,19:1504-14.
9、Chen L, Toth M. Fragile X mice develop sensory hyperreactivity to auditory stimuli. Neuroscience, 2001,103:1043-50.
10、Musumeci SA, Bosco P, Calabrese G. Audiogenic seizures susceptibility in transgenic mice with fragile X syndrome. Epilepsia, 2000,41:19-23.
11、Martin dl and Rmival.k .Regulate ofγ-aminobutyri acid synthesis in the brain .J Neurochem ,1993;60:359-407.
12 、Levitt P. Disruption of interneuron development[J]. Epilepsia, 2005, 46(suppl 7): 22–28.
13、Khushdev K. Thind, Ruth Yamawaki, Ibanri Phanwar, Guofeng Zhang, Xiling Wen, Paul SInitial Loss but Later Excess of GABAergic Synapses with Dentate Granule Cells in a Rat Model of Temporal Lobe Epilepsy. Buckmaster Comp Neurol. 2010 March 1;
14、Silje Alvestad, Janniche Hammer, Hong Qu, Asta H?berg, Ole Petter Ottersen, Ursula Sonnewald Reduced astrocytic contribution to the turnover of glutamate, glutamine, and GABA characterizes the latent phase in the kainate model of temporal lobe epilepsy J Cereb Blood Flow Metab. 2011 August; 31(8): 1675–1686.
15、Buckmaster PS, Jongen-Relo AL. Highly specific neuron loss preserves lateral inhibitory circuits in the dentate gyrus of kainate-induced epileptic rats. J Neurosci, 1999,19:9519-29.
16、Woo NH, Lu B. Regulation of cortical interneurons by neurotrophins: from development to cognitive disorders[J]. Neuroscientist, 2006, 12(1): 43-56.
17、Kokaia M, Ernfors P, Kokaia Z, Elmer E, Jaenisch R, Lindvall O..Suppressed epileptogenesis in BDNF mutant mice. Exp Neurol 1995,133():215–24.
18、He XP, Kotloski R, Nef S, Conditional deletion of TrkB but not BDNF prevents epilep- togenesis in the kindling model. Neuron 2004 43:31–42.
19、 Antar LN, Dictenberg JB, Plociniak M, Afroz R, Bassell GJ. Localization of FMRP-associated mRNA granules and requirement of microtubules for activity-dependent trafficking in hippocampal neurons. Genes, brain, and behavior 2005 Aug;4(6):350-9.
20、 Darnell JC, Klann E. The translation of translational control by FMRP: therapeutic targets for FXS. Nat Neurosci 2013 Nov;16(11):1530-6.
21、 Darnell JC, Van Driesche SJ, Zhang C, Hung KY, Mele A, Fraser CE, Stone EF, Chen C, Fak JJ, Chi SW, Licatalosi DD, Richter JD, Darnell RB. FMRP stalls ribosomal translocation on mRNAs linked to synaptic function and autism. Cell 2011 Jul 22;146(2):247-61.
22、 Zhou Z, Cao M, Guo Y, Zhao L, Wang J, Jia X, Li J, Wang C, Gabriel G, Xue Q, Yi Y, Cui S, Jin Q, Wang J, et al. Fragile X mental retardation protein stimulates ribonucleoprotein assembly of influenza A virus. Nature communications 2014 Feb 10;5:3259.
23、 Mercaldo V, Descalzi G, Zhuo M. Fragile X mental retardation protein in learning-related synaptic plasticity. Mol Cells 2009 Dec 31;28(6):501-7.
24、Gibson JR, Bartley AF, Hays SA, et al. Imbalance of neocortical excitation and inhibition and altered UP states reflect network hyperexcitability in the mouse model of fragile X syndrome. J Neurophysiol, 2008,100:2615-26.
25、龙小艳, 李昌琦, 肖波, 等. 海人酸颞叶癫痫大鼠海马GAD65表达的动态变化. 中国现代医学杂志, 2005,(08):1189-1191.
26、傅思莹, 方若鸣, 方更利, 等. β-细辛醚对青霉素点燃癫痫大鼠额叶皮质FOS、GAD65表达的影响. 中药材, 2008,(01):79-81.
27、项华, 沈创鹏, 陈晓薇, 等. 益气熄风化痰法对慢性癫痫大鼠大脑海马区GAD65表达的影响. 中药新药与临床药理, 2011,(06):646-648.
28、徐仁伵, 胡元元, 張洪, 等. 神经元GAD和GABA-T的活性与癫痫发病的关系. 中国神经免疫学和神经病学杂志, 2001,(04):237-239.