一道三角形题的纠错教学与思考

2015-07-06 14:08:02郝志永
数学学习与研究 2015年18期
关键词:本堂余弦定理比值

郝志永

一、考情分析

问题:已知△ABC中,a,b,c分别为角A,B,C的对边,a2 + b2 < c2,且sin2C -(1)求角C的大小;(2)的取值范围.

解三角形是高考试题中相对比较简单的题目,出错率达60%,针对这种现象,笔者用投影仪展示出如下题目:

在△ABC中,内角A,B,C的对边分别为a,b,c,已知a = b cos C + c sin B.(1)求角B;(2)若b = 2,求△ABC面积的最大值.

通过对这道高考题目的批改,只有一名同学没有全对,所以效果不错. 现将这节课的纠错过程整理出来,供读者参考. 二、教学回放

(一)问题分析

师:上文解三角形题. 如何理解题目中的条件a2 + b2 < c2.

生1:结合余弦定理cos C = < 0,可以推出角C为钝角.

师:很好,其实还可以结合余弦定理进一步推导出三边的关系,哪名同学补充一下?

生2:因为余弦定理中的分母2ab 大于零,所以当a2 + b2 > c2时C为锐角,当a2 + b2 = c2时C为直角,当a2 + b2 < c2时为钝角.

师:生2 利用三角形的边长恒为正数这一条件,把分式的判断转化为分子的判断,同学们如何求的取值范围?

生3:因为是比值关系,所以符合正弦定理的边角互化,利用正弦定理把边的比值转化成三角函数的比值,再结合辅助角公式,利用三角形内角和为180°,确定出角A的取值范围,进而得到答案.

师:不错,结合的非常好,同学们还有哪些思路呢?

生4:利用三角形的边长大于零,结合均值不等式(均值不等式的首要条件是a > 0,b > 0)就可以求出答案.

师:这两种解题方法在解题过程中出现不少失误,那么我们一起分析一下解题过程.

(二)纠错分析

1.第一问纠错分析

师:同学们,生9的解法怎么樣?

生10:生9方法非常好,利用余弦定理,结合均值不等式,看着思路也没有错,但为什么答案不一样呢?

师:大家可以考虑一下对生5解法进行补充或纠正,使之正确.

生11:问题出在没有考虑到在三角形中,两边之和大于第三边,即a + b > c,所以 > 1.

师:说的很好,不仅指出问题,而且解决了问题. 我们这节课主要是研究了一些同学的错误解法,认真总结经验与教训,希望能对今后的学习有帮助.

3. “纠错”应用

通过本堂课的学习把“会而出错”的错点克服掉,是纠错分析后的一次应用,更是对本堂课的深层理解.

猜你喜欢
本堂余弦定理比值
余弦定理的证明及其应用
聚焦正、余弦定理的变式在高考中的应用
正余弦定理的若干证明与思考
走进崇本堂
闽南风(2017年9期)2017-09-27 15:46:25
比值遥感蚀变信息提取及阈值确定(插图)
河北遥感(2017年2期)2017-08-07 14:49:00
正余弦定理在生活中的运用
智富时代(2017年4期)2017-04-27 02:13:48
务本堂
扬子江诗刊(2016年5期)2016-11-26 00:34:28
务本堂
扬子江(2016年5期)2016-11-18 20:22:15
不同应变率比值计算方法在甲状腺恶性肿瘤诊断中的应用
双电机比值联动控制系统