孙秀杰
【摘要】发展学生思维能力是数学教学的基本任务。基础教育的数学不是精英教学,而是以促进学生全面可持续发展能力的形成为根本。在教学中教师要着眼于学生的需要,注重发挥数学学科优势,促进学生思维能力发展。
【关键词】数学教学 思维能力
数学是思维的体操,数学教学就是要注重学生思维能力的发展,从而全面提高学生的数学综合素质。如何在小学数学中发展学生的思维能力呢?下面谈几点认识。
一、创新设计数学问题,发展灵活性思维能力
设计多样化的数学问题,有利于把学生的单向思维活动转变为全方位的立体思维活动并促进其全面发展。如设计发散式问题,可以培养和发展学生的灵活思维能力。学生的数学思维能力灵活与否与发散思维的水平有十分密切的关系。因此,合理地设计散式问题,引导学生多角度、多层次地进行思考,就可以培养和发展学生的灵活思维能力。如教学“女生相当于男生的7/8”这种具有发散性的应用题时,教师就要有目的地引导学生多角度、多层次地进行思考:①男生人数是女生的8/7;②男生人数比女生人数多1/7;③女生人数比男生人数少1/8;④男生人数是男女生总数的8/15; ⑤女生人数是男女生总人数的3/15;⑥男生人数比女生人数多总人数的1/15……等等。在小学数学教材中,这类具有发散性思维的内容很多。只要我们认真研究 和分析,就能设计出许多发散式的问题,借以培养和发展学生的灵活思维能力。还可以改变问题条件,引导学生从多方面思考,训练思维灵活性。学校用笔经费添置课桌椅,可购40张单人课桌或60把課椅,现在要课桌椅配套添置,这笔钱可购置多少套?从表面上看是单价、总价、数量问题,学生在对它们进行仔细地分析和比较后,就可以概括抽象出它们之间的共同道理及其相互关系,并能以此解答和推及其它与之相关的其它数学问题。
二、引导创新思考,发展批判性思维能力
学生的创造能力与批判思维能力密切相关,教师要十分注重学生的批判思维能力的培养与提高。比如在讲三角形的内角和是180度以后,教师可以设计这样的问题:“因为一个三角形的内角和是180°,那么,把这个三角分成两个小三角形,那么,每个小三角形的内角和就是180°÷2=90°,正确吗?”有的学生就可能回答:是正确的,而忘记了三角形的内角和与三角形的大小无关这一道理。教师组织学生对这些错例进行分析就可以加深他们对三角形内角和及其面积公式的正确理解,从而培养和提高了学生的批判思维能力。再如教师可让学生去思考:“有两根同样长的钢材,第一根用去它的2/5,第二根用2/5米,剩下的那一段长?为什么?”这道题按“常规”解,要求剩下的钢材哪一段长,必须先知道两根钢材原来有多长与分别用去多少米。但钢材原长不知道,这题似乎不能解了。这时教师就应设计探究式问题来启发学生,在怎样的条件下,用去钢材会一样长?又在怎样的条件下,用去的钢材不一样长?这种探究式问题的提出,就能充分地调动学生探索问题的积极性,促使学生去积极思考和探索,最后找到了解答此问题的新颖方案。
三、实施反向思维训练,发展逆向思维能力
学生思维能力的灵活性,与学生的反向思维能力相关联。为了培养和提高学生的反向思维能力,教师要有意识地结合问题引导学生进行反向思考,发展逆向思维能力。如教学“小数点位置移动引起小数大小的变化”这个问题时,可以引导学生对小数点位置移动引起小数大小的变化进行观察、比较,得出结论:“小数点向右移动一位、两位、三位……原来的数就会扩大10倍、100倍、1000倍……”,那么,反过来又会怎样呢?学生会很快地回答:“小数点向左移动一位、两位、三位……原来的数就会缩小10倍、100倍、1000倍……。”在类此的思维训练中,学生的思维活动始终处在顺向和反向的积极调度的过程之中,得到良好的逆向思维的训练。
四、创设相近问题,发展类比思维能力
要使学生的新知识与原有知识结构得到发与提高,还必须加强学生的类比思维能力的培养与提高。如讲授“异分母分数加减法”之前,必须复习一下整数加减法、小数加减和同分母分数加减法的内容,并把它们归属到一个知识整体中去。然后引导他们概括出加减式题都必须计数单位(或分数单位)相同才能直接相加减的道理。在讲新课时,可以设计出相近式问题:①异分母分数加减法能直接相加减吗?为什么?②异分母分数加减法首先要怎样?③怎样把异分母分数化成同分母分数?通过这种相近式的问题地逐一思考,学生就会很自然地进行类比思维:异分母分数相加减→分数单位不同不能直接加减→化成同分母分数→通分→相加减。
五、开展语言表达训练,发展语言思维能力
思维是语言的内容,而语言是思维的外在表现形式。加强学生语言训练,不仅能提高学生的口头表达能力,而且有利于促进学生的思维能力的发展。教师在引导学生做一般应用题时,可加强学生对自己解题步骤和思路的解说训练,先让学生审题,指出它的已知条件和所求,并分析题中的数量关系,有理有据地确定解题思路,然后要求学生用清楚、准确和有条理的语言把它表达出来。如 “学校服装加工厂计划做670套衣服,已经做了4.5天,平均每天做 82套,剩下的要在3.5 天里做完,平均每天做多少套?”这道应用题,可以先让学生审题,指出已知条件和所求。学生经过分析后指出:“670套”是总的工作量,“4.5天”是已经完成的工作时间,“82 套”是开始工作时的工作效率。“3.5天”是剩下的工作量时间,这些都是本题的已知条件。而本题所求,即是剩下的工作所使用的工作效率。接着要求学生分析题中的数量关系,确定解题思路,即第一步,求已经完成的工作量,根据工作总量等于工作效率乘以工作时间,所以列式是82×4.5=369(套);第二步,是求剩下的工作量,用总的工作量减去已完成的工作量,列式是670减去已经完成的工作量,求出的剩余的工作量;第三步是求平均每天做多少套,即剩余的工作量所用的工作效率,列式是:剩下的工作总量除以3.5天,求出的结果就是剩下的平均每天做多少套。最后要求学生把解这道应用题的整个步骤和思路用清楚、准确的语言有条有理地口述出来。这就可以把语言的训练与促进学生的思维能力的发展巧妙地结合起来。加强语言训练,还可以让学生说他人解题思路、解说自己学习方法的训练,让学生在发展语言的同时,思维能力也得到有效发展。