余梓逵,宋 颖,柳 林
全视网膜光凝治疗不同阶段缺血型视网膜中央静脉阻塞的疗效分析
余梓逵,宋 颖,柳 林*
(上海交通大学医学院附属仁济医院眼科,上海 200127)
评价全视网膜光凝(PRP)治疗对不同阶段缺血型视网膜中央静脉阻塞(CRVO)的疗效。2011年6月至2014年4月来上海交通大学医学院附属仁济医院眼科门诊通过视功能、裂隙灯、扩瞳眼底及眼底荧光血管造影(FFA)检查诊断为缺血型CRVO的患者,根据激光治疗时是否存在虹膜新生血管(INV)将患者分为无INV的A组(34眼)和已出现INV的B组(7眼)。所有患者均接受PRP治疗,并根据病情变化和FFA的结果在随访中予补充光凝。随访6个月~3年,平均(19.3±8.5)个月,观察PRP在减少和预防缺血型CRVO严重并发症及光凝等方面的差异。A、B两组患者在发病年龄上差异无统计学意义(>0.05)。经PRP治疗后,B组患者最终的激光次数和总光凝点数均显著多于A组(<0.05);B组患者新生血管性青光眼(NVG)的发生率较高(<0.05),但两组间的玻璃体出血(VH)的发生率差异无统计学意义(>0.05);两组患者在治疗前后的视力差异无统计学意义(>0.05)。本研究提示缺血型CRVO患者在没有出现INV之前进行PRP,最终严重并发症的发生率相对较低,所需光凝次数和点数均较少。
视网膜中央静脉阻塞,缺血型;全视网膜光凝;虹膜新生血管
视网膜中央静脉阻塞(central retinal vein occlusion,CRVO)是一种严重损害>50岁人群视功能的眼底血管性疾病,缺血型患者如不能及时适当治疗可造成严重的并发症,如玻璃体出血(vitreous hemorrhage,VH)、虹膜新生血管(iris neovascularization,INV)及新生血管性青光眼(neovascular glaucoma,NVG)等,最终均可造成患眼失明。对于缺血型CRVO的基本治疗,至今仍然是全视网膜光凝(panretinal photocoagulation,PRP)[1,2],但对于激光治疗的时机尚有不同观点。目前主要有两种选择,一是对缺血型CRVO患者进行预防性PRP,以减少失明风险;二是先对患者进行观察,如发现虹膜出现新生血管,即做PRP[3]。本文拟对处于不同阶段的缺血型CRVO进行PRP,分析其疗效和并发症的发生情况。
2011年6月至2014年4月来上海交通大学医学院附属仁济医院眼科门诊就诊的CRVO患者,均做视力、裂隙灯、扩瞳眼底及眼底荧光血管造影(fundus fluorescein angiography,FFA)检查。缺血型CRVO的确定标准:FFA显示视网膜无灌注区≥10个视盘面积者,或出现INV者。本组病例不包括已经发生VH或因角膜水肿或瞳孔过小而无法进行光凝的CRVO患者。符合缺血型CRVO诊断标准的患者共41例41眼,其中无INV者34眼,有INV者7眼,基线视力HM/BE~0.6。
根据激光治疗时是否存在INV将患者分为无INV的A组(34眼)和已出现INV的B组(7眼),后者包括开始属于未定型、但在随访过程中出现了INV的CRVO患者。所有患者均接受PRP治疗,本研究使用IRIS Oculight倍频532激光器,在接触式广角激光镜下做PRP,一般每周1次,3次完成,并根据病情变化及FFA的结果,如INV不消退或眼底仍存在片状毛细血管无灌注区,或视网膜、视盘上有新生血管,在随访中予补充光凝;如治疗过程中发生VH或角膜混浊水肿无法继续光凝,则治疗暂停或终止。激光参数选择光凝反应Ⅱ级,光斑直径200~300μm,点与点之间间隔半个到一个光斑直径距离。随访6个月~3年,平均(19.3±8.5)个月。统计最终两组患者的光凝次数、平均激光点数、VH的发生率、NVG的发生率和视功能等情况。
本研究的A、B两组患者在发病年龄上差异无统计学意义[(62.4±12.8)(64.5±11.4)岁,>0.05]。
随访期内,A组患者激光治疗3~5次,B组3~7次,B组的光凝次数和总光凝点数均较A组多(<0.05;表1)。
表1 两组患者光凝次数和总光凝点数比较
Group A: without iris neovascularization; Group B: with iris neovascularization. Compared with group A,*<0.05
A组患者在随访期内未有NVG的发生,而B组患者在入组时有1眼已经存在NVG,经激光治疗后,仍有2眼以NVG告终,两组患者在NVG发生率上差异有统计学意义(<0.05;表2)。
表2 两组患者NVG发生率的比较
Group A: without iris neovascularization; Group B: with iris neovascularization; NVG: neovascular glaucoma; PRP: panretinal photocoagulation. Compared with group A,*<0.05
A组患者在治疗过程中有4眼发生VH;B组患者在治疗过程中无VH的发生,经统计两组间在VH发生率上差异无统计学意义(>0.05;表3)。
表3 两组患者VH的发生率比较
Group A: without iris neovascularization; Group B: with iris neovascularization; VH: vitreous hemorrhage; PRP: panretinal photocoagulation
两组患者在治疗前后的视力差异均无统计学意义(>0.05),但B组患者最终有2眼无光感(表4)。
表4 两组患者治疗前后视力比较
Group A: without iris neovascularization; Group B: with iris neovascularization; HM/BE: hand motion before eye
视网膜静脉阻塞(retinal vein occlusion,RVO)是老年人常见的眼底血管性疾病,发病仅次于糖尿病性视网膜病变。其中>90% CRVO患者发病年龄>50岁,男性略多于女性,其发病与高血压、高血脂、高血糖及高血黏度等有较密切的关系[2,4]。CRVO根据其视功能及眼底缺血状况可区分为非缺血型及缺血型,后者如不及时治疗,发生VH及NVG的概率较高。尽管近年来出现了一些新的治疗方法,如眼内注射类固醇激素治疗CRVO所引起的黄斑水肿[5,6],抗血管内皮生长因子(vascular endothelial growth factor,VEGF)药物治疗眼内新生血管和减轻黄斑水肿[7−11],以及通过激光诱导形成视网膜脉络膜静脉吻合等方法[12],均取得了一定的疗效,但对于缺血型CRVO来说,最根本的抑制新生血管形成的方法依然是PRP,而且治疗费用相比眼内注射抗VEGF等药物要低廉得多;定期注射抗VEGF药物,对减轻及吸收黄斑水肿具有肯定的效果,但不能完全阻止视网膜无灌注区的扩大[13,14]。PRP通过凝固高耗氧的视网膜色素上皮细胞及光感受器,使得眼底的低氧缺血状况得以缓解,减少视网膜无灌注区,从而减少了眼内VEGF的产生,最终抑制眼内新生血管形成、促使已有的新生血管消退、减少VH等严重并发症的发生。据统计,如果缺血型CRVO不进行激光治疗干预,最终约有60%的患眼将发生NVG,>20%患者发生眼底新生血管形成及VH[15]。
本组病例研究结果发现,如果在尚未出现并发症的情况下,先行对缺血型CRVO患者(A组)行PRP,经观察最终没有发生NVG及丧失视功能的病例;在34眼中,有4眼(11.8%)发生VH,较文献[15]不进行光凝干预的VH的发生率降低近1倍。在出现INV后再治疗的7眼中(B组),有5眼INV消失,最终没有严重并发症发生,包括没有发生VH,但有2眼INV虽经多次光凝仍无法消退,最后以NVG告终,视功能丧失。就光凝次数和总PRP点数来说,A、B两组之间差异均有统计学意义,B组患眼所接受的光凝次数和点数均多于A组。从最终视力来看,两组患者在PRP治疗后均无显著改善,但B组有2眼因NVG最终丧失光感。
对于缺血型CRVO的激光治疗时机,至今仍有不同观点。CRVO研究组认为,即使对缺血型CRVO做预防性PRP,能降低INV的发生率,但不能完全阻止其产生;相反,在出现INV后立即做PRP,INV更易消退,所以建议对缺血型CRVO患者先观察,待发现INV后再做PRP[3]。近来,有学者仅针对CRVO的缺血区进行早期预防光凝,既可减轻因为广泛PRP导致的损伤,又起到减轻眼内缺血的作用[16]。本研究发现,对于缺血型CRVO患者,在没有出现INV时就做PRP,最终发生NVG和视功能丧失的比例明显减少。我们的结果倾向于做预防性光凝更好,可能原因:(1)发生INV的病例可能病程较长,没有在出现INV后的第一时间就做PRP;(2)发生INV的病例本身可能眼底缺血状况较重。由于我们发现临床上存在INV的患者很多已经丧失了激光治疗的条件,所以B组患者数量偏少,可能对结果的判定产生一定的影响。但这也反过来说明等待INV出现后再行光凝有很大的风险和不确定性。因此,我们的结论是,就我国目前的国情来说,对缺血型CRVO患者做预防性PRP比较容易掌控,可以避免大部分患眼严重并发症的发生。
[1] Mohamed Q, McIntosh RL, Saw SM,. Interventions for central retinal vein occlusion: an evidence-based systematic review[J]. Ophthalmology, 2007, 114(3): 507−519.
[2] Hahn P, Fekrat S. Best practices for treatment of retinal vein occlusion[J]. Curr Opin Ophthalmol, 2012, 23(3): 175−181.
[3] A randomized clinical trial of early panretinal photocoagulation for ischemic central vein occlusion. The Central Vein Occlusion Study Group N report[J]. Ophthalmology, 1995, 102(10): 1434−1444.
[4] Rogers S, McIntosh RL, Cheung N,. International Eye Disease Consortium. The prevalence of retinal vein occlusion: pooled data from population studies from the United States, Europe, Asia, and Australia[J]. Ophthalmology, 2010, 117(2): 313−319.
[5] Bezatis A, Spital G, Höhn F,. Functional and anatomical results after a single intravitreal Ozurdex injection in retinal vein occlusion: a 6-month follow-up- the SOLO study[J]. Acta Ophthalmol, 2013, 91(5): e340−e347.
[6] Ip MS, Scott IU, VanVeldhuisen PC,. A randomized trial comparing the efficacy and safety of intravitreal triamcinolone with observation to treat vision loss associated with macular edema secondary to central retinal vein occlusion: the Standard CareCorticosteroid for Retinal Vein Occlusion (SCORE) study report 5[J]. Arch Ophthalmol, 2009, 127(9): 1101−1114.
[7] Campochiaro PA, Sophie R, Pearlman J,. Long-term outcomes in patients with retinal vein occlusion treated with ranibizumab: the RETAIN study[J]. Ophthalmology, 2014, 121(1): 209−219.
[8] Brown DM, Heier JS, Clark WL,. Intravitreal aflibercept injection for macular edema secondary to central retinal vein occlusion: 1-year results from the phase 3 COPERNICUS study[J]. Am J Ophthalmol, 2013, 155(3): 429−437.
[9] Ogura Y, Roider J, Korobelnik JF,. Intravitreal aflibercept for macular edema secondary to central retinal vein occlusion: 18-month results of the phase 3 GALILEO study[J]. Am J Ophthalmol, 2014, 158(5): 1032−1038.
[10] Thach AB, Yau L, Hoang C,. Time to clinically significant visual acuity gains after ranibizumab treatment for retinal vein occlusion: BRAVO and CRUISE trials[J]. Ophthalmology, 2014, 121(5): 1059−1066.
[11] Campochiaro PA. Anti-vascular endothelial growth factor treatment for retinal vein occlusions[J]. Ophthalmologica, 2012, 227(Suppl 1): 30−35.
[12] McAllister IL, Gillies ME, Smithies LA,. Factors promoting success and influencing complications in laser-induced central vein bypass[J]. Ophthalmology, 2012, 119(12): 2579−2586.
[13] Sophie R, Hafiz G, Scott AW,. Long-term outcomes in ranibizumab-treated patients with retinal vein occlusion: the role of progression of retinal nonperfusion[J]. Am J Ophthalmol, 2013, 156(4): 693−705.
[14] Campochiaro PA, Bhistikul RB, Shapiro H,. Vascular endothelial growth factor promotes progressive retinal nonperfusion in patients with retinal vein occlusion[J]. Ophthalmology, 2013, 120(4): 795−802.
[15] Anon. Natural history and clinical management of central retinal vein occlusion. The Central Vein Occlusion Study Group[J]. Arch Ophthalmol, 1997, 115(4): 486−491.
[16] Tan CS, Lim LW, Singh M,. Early peripheral laser photocoagulation of nonperfused retina improves vision in patients with central retinal vein occlusion. Results of a proof of concept study[J]. Graefes Arch Clin Exp Ophthalmol, 2014, 252(10): 1689−1690.
(编辑: 周宇红)
Efficiency of panretinal photocoagulation in treatment of ischemic central retinal vein occlusion at different stages
YU Zi-Kui, SONG Ying, LIU Lin*
(Department of Ophthalmology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China)
To evaluate the therapeutic effect of panretinal photocoagulation (PRP) in the treatment of ischemic central retinal vein occlusion (CRVO) at different stages.From June 2011 to April 2014, all the patients with ischemic CRVO diagnosed in our department by visual function, slit-lamp biomicroscopy, funduscopy under dilated pupil and fluorescein angiography were recruited in this study. Before PRP, the cohort was divided into 2 groups according to the existence of iris neovascularization (INV), that is, group A (34 eyes without INV) and group B (7 eyes with INV). All patients receivedstandard PRP treatment in a period of 2 to 3 weeks, and the additional laser treatments were given during the follow-up period based on the results of fundus fluorescein angiography (FFA) or clinical manifestations. They were followed up for 6 months to 3 years [(19.3±8.5) months]. The incidence of severe complications and the times of laser treatment were observed and compared between the 2 groups.There was no statistical difference in the term of age of onset between the 2 groups (>0.05). When PRP finished, the times of laser treatment and the total number of laser spots needed were significantly greater in group B than those in group A (<0.05). The incidence of neovascular glaucoma (NVG) was obviously higher in group B (<0.05), but there was no statistical difference in vitreous hemorrhage (VH) between the 2 groups (>0.05). No significant difference was found in the visual acuity before and after treatment in both groups (>0.05).For ischemic CRVO, the incidence of severe complications is relatively low, and the times of laser treatment and the total number of laser spots are also less when PRP is performed before the occurrence of INV.
central retinal vein occlusion, ischemic; panretinal photocoagulation; iris neovascularization
R774.1
A
10.11915/j.issn.1671−5403.2015.01.003
2014−12−16;
2015−01−13
柳 林, E-mail: 18918358758@163.com