宋彬 吴苾
(四川大学华西医院放射科,四川成都610041)
原发性肝癌90%以上的组织学类型是肝细胞癌(Hepatocellular carcinoma,HCC)。根据美国肝病研究学会、亚太肝脏研究协会、欧洲肝病学会及我国卫生部最新指南[1~4],影像学检查是HCC诊断与监测的重要手段。近年来,随着影像学技术的不断完善与飞速发展,特别是在功能与代谢磁共振成像技术方面的深入研究,影像学不仅能够早期发现和早期确诊HCC,还可以反映HCC的致病机制、组织病理水平的特征改变和细胞水平的基因型异常与影像表现的联系,并据此判断HCC的生物学行为和指导治疗方案的选择,而且还能够早期评判疗效和预测预后。本文就常规影像学检查应用于HCC诊断的现状及近年来在功能与代谢磁共振成像技术方面的研究进展和未来的方向作一述评。
超声检查为非侵入性检查,对人体组织无不良影响,可用于HCC的普查和治疗后随访。超声造影能实时反映病灶的血供特征,常用于HCC的鉴别诊断。术中超声可发现术前CT、超声检查皆未发现的肝内小病灶。超声检查的缺点是易受气体干扰,伪影较多,受超声医师检查水平影响较大。
现代CT应用非常广泛,因其图像清晰而稳定,能全面客观地反映HCC的特性,常用于肝癌常规诊断和治疗后随访。CT增强扫描有以下优势:可清楚地显示肝癌的大小、数目、形态、部位、边界、肿瘤血供丰富程度以及与肝内管道的关系;对门静脉、肝静脉和下腔静脉是否有癌栓,肝门和腹腔淋巴结是否有转移,肝癌是否侵犯邻近组织器官都有重要的诊断价值;还可通过显示肝脏的外形、脾脏的大小以及有无腹水来判断肝硬化的严重程度。特别是CT动态增强扫描可以显著提高小肝癌的检出率。
MRI具有很高的组织分辨率和多参数、多方位成像等特点,而且无辐射,对肝内小病灶的检出、血管的情况以及肿瘤内结构的显示有独到之处,因此是HCC最佳检查方法。MRI在早期诊断小HCC、对HCC与肝脏局灶性增生结节、肝腺瘤等的鉴别诊断方面,准确度高于CT。对于肝癌患者肝动脉化疗栓塞(TACE)疗效的跟踪观察,MRI较CT有更高的临床价值。
利用上述常规超声、CT、MRI等影像学检查方法,约75%的HCC可以通过其形态学特征,特别是典型的血流动力学改变而得到明确诊断;但有约25%的HCC不表现典型的血流动力学改变,并且在硬化肝背景上通过影像学检查来鉴别不典型增生结节(dysplastic nodule)与早期小HCC仍具有较大挑战性。
目前研究发现,多种与HCC的组织病理、生物学行为相关的MRI征象具有预测HCC预后的价值。
纤维包膜和假包膜:HCC的纤维包膜内层为较致密的纤维组织,呈T1/T2稍低信号;外层为扩张的血窦和新生小胆管,呈T1稍低/T2稍高信号。假包膜由扩张的血窦和瘤周纤维组织组成,T1增强的延迟期表现为环状强化[5]。纤维包膜是进展期结节性HCC的特征,具有完整纤维包膜的HCC病灶治疗后的复发率低于没有包膜或包膜不完整的病灶,提示纤维包膜可能可以阻止HCC的播散[5]。
HCC内部脂肪成分:T1W同/去相位扫描能够明确HCC病灶内是否含脂肪成分。脂肪常常出现在1.5~3cm大小的肿瘤灶内,很少出现在较大的肿瘤内。含有脂肪成分的HCC肿瘤生长和进展较缓慢,较少发生转移,预后相对较好[6]。
T1高信号结节:由结节内铜蛋白等顺磁性物质、淀粉或糖蛋白堆积、铁沉着、出血和脂肪沉着等HCC内病理过程所致[7]。T1高信号常见于再生结节和不典型增生结节,部分高分化HCC也可有类似表现。T1低信号的HCC常常组织学分级较低,而T1高信号的HCC分级较高,提示HCC预后相对较好[7]。
结节中结节(nodule in nodule):在大结节中(常常是DN,特别是高度DN,少数是早期HCC)出现进展期HCC小结节灶,反映了HCC的生长方式。小结节通常呈现典型进展期HCC信号特点、强化方式;而大结节的MR信号常常表现为分化较好组织的特点[7,8]。结节中结节是影像监测、随访肝硬化相关结节演变过程中发现早期小HCC的关键阶段。
HCC的微血管侵犯(micro vascular invasion,MVI):在单结节型、单结节伴结节外生长型、多结节融合型HCC中,MVI的发生率依次增高。直径大于4cm的HCC,MVI发生率3倍于直径小于4cm的HCC。低分化/未分化的HCC,MVI发生率是高分化HCC的6倍。影像学检查目前还不能直接显示MVI,但一些影像学的表现可以间接提示MVI的存在,如MVI的发生与HCC的多灶性[9]、MR肝胆期HCC病灶周围低信号环、18F-FDG-PET的摄取程度相关[10],这是目前HCC研究的热点。
3.1 DCE-MRI(Dynamic contrast-enhanced MR imaging,动态增强磁共振成像) DCE-MRI通过静脉团注顺磁性对比剂后,动态采集动脉期、门静脉期、平衡期,观察对比剂的分布变化及测量容积转运参数(Volume transfer coefficient,Ktrans)、血管外细胞外容积分数(Ve)、速率常数(Kep),可定量反映不同扫描时间正常肝脏组织及病灶区域的血流动力学变化。该技术能够帮助鉴别肝脏结节良恶性,还能描绘出恶性病灶周围微血管的浸润情况,也可用于HCC患者的预后分析以及评估局部化疗、TACE及抗血管生成药物的疗效[11~21]。DCE-MRI能显示HCC的“光环带”强化表现(Corona enhancement),为HCC结节周围肝实质组织的静脉引流现象,反映了HCC的生长方式,HCC结节静脉引流的演变特点是HCC极易侵犯门静脉的病理解剖基础,早期富血供小肝癌常常出现这类强化特点[22]。
3.2 DWI(Diffusion-weighted Imaging,弥散加权成像) DWI是基于组织细胞间水分子布朗运动的磁共振成像技术,通过测量表观弥散系数(Apparent diffusion coefficient,ADC)定量地反映组织水分子的活动能力[23]。通常情况下,HCC细胞密度较周围正常组织高,水分的自由弥散受到限制,导致其在DWI图像上表现为高信号,且ADC值低于周围正常组织。DWI应用于HCC中,能够显著提高微小HCC的检出率[24~26],可帮助鉴别肝脏良性及恶性结节,可用于预测HCC的病理分级[27~29],并用于HCC定量评价HCC患者接受TACE等局部消融治疗及系统性治疗后肿瘤细胞坏死情况[30~32]。DWI和ADC值反映HCC病灶结构异常,包括细胞数目、细胞密度、细胞排列、纤维增生等,因此与HCC的组织分化程度密切相关。DWI信号高、低ADC值提示HCC组织分化程度差;DWI显著高信号、ADC值低,与HCC病灶周围MVI和肿瘤侵袭性相关[33]。因此DWI和ADC值可以评价HCC的生物学行为。
3.3 肝脏特异性MRI对比剂 近年来,新型肝脏特异性MRI对比剂的应用明显提高了MRI对早期HCC的诊断能力。这些肝脏特异性对比剂包括网状内皮系统(Reticuloendothelial system,RES)特异性的超顺磁性氧化铁(Superparamagnetic iron oxid,SPIO)颗粒及肝细胞特异性对比剂。SPIO是肝脏RES内Kupffer细胞特异性对比剂,静脉注射后可被Kupffer细胞摄取并显著缩短T2弛豫时间,从而明显减低组织T2WI信号强度。HCC内一般没有或仅有少量Kupffer细胞[35],故其组织信号强度明显高于周围正常肝脏组织。由于SPIO-MRI中组织的强化程度与Kupffer细胞的数量密切相关,SPIO-MRI可以有效鉴别早期HCC与其他良性肝脏结节并且预测HCC的分化程度[34~38]。肝细胞特异性对比剂经静脉团注后可被正常肝细胞特异性摄取再经胆管排泄,从而能够显示组织微循环情况及肝细胞功能。目前常用的肝细胞特异性对比剂包括Gd-EOB-DTPA及Gd-BOPTA。大部分HCC在肝细胞特异期表现为低信号,可用于与一些肝胆期表现为高信号的肝脏结节鉴别[38~42]。OATP-8的表达是决定HCC病灶肝胆期强化程度的主要因素,其表达受相关基因的调控。肝胆期高信号的HCC病灶,摄入的HSCA存在于细胞质内、胆小管内或层状假腺体内(与MRP2通道蛋白的表达状态有关)。肝胆期HCC的强化方式与其组织分化程度、肿瘤侵袭性和预后密切相关,肝胆期高信号的HCC病灶,其分化程度好、肿瘤侵袭性低、术后复发率低[43~46]。
3.4 BOLD(blood-oxygen-level dependent,血氧水平依赖成像) BOLD是一种新兴的磁共振成像技术,它能够通过测定自旋-自旋弛豫时间(Spin-spin relaxation time,T2*)、表观自旋-自旋弛豫率(Apparent spin-spin relaxation ratio,R2*)等与组织血红蛋白含氧量密切相关的指标,定量反映组织的氧代谢情况,目前已经运用于中枢神经系统、肾脏、肝脏等领域。动物实验表明[47~49],正常肝组织在氧气的刺激下R2*明显增强,而纤维化的肝组织R2*无明显变化,后者的ΔR2*明显小于前者,表明ΔR2*可以作为反映肝脏血流动力学及纤维化程度的良好指标。BOLD具有无创、可重复性强且无需注入对比剂等优点,在肝脏良、恶性病灶的诊断与评估中拥有广阔的应用前景。
3.5 ASL(arterial spin labeling,动脉自旋质子标记)
ASL利用磁性标记的动脉血作为内源性标记物定量反映组织灌注情况,具有无创、可重复使用且无需注射对比剂等优点,目前已经广泛应用于评估脑、肺、肾、心脏等器官的血流灌注情况。近年来的研究发现,ASL可以很好地显示肠系膜上静脉及肝内门静脉的结构及灌注情况[50,51]。目前虽尚无ASL在HCC中的相关研究,但ASL可以在不使用对比剂的情况下无创地反映出组织的灌注情况,因此在HCC的诊断与监测中具有广阔的应用前景。
3.6 SWI(susceptibility-weighted imaging,磁敏感成像) SWI是一种以T2*加权梯度回波序列作为序列基础,根据不同组织间的磁敏感性差异提供对比增强机制的新技术[1]。核磁共振磁敏感成像对组织中血液或铁的存在非常敏感。SWI可以反映HCC的组织病理特点,评估HCC假包膜、肿瘤内部微出血、HCC镶嵌征等微观征象。
3.7 MRS(MR spectroscopy,MR波谱成像) MRS是可以无创性评估器官组织生化代谢的唯一手段。目前,MRS在肝脏中的研究主要集中在弥漫性肝脏疾病(如肝脏脂肪化程度的定量评估)及局灶性肝脏疾病。MRS在诊断肝脏恶性肿瘤中的敏感性与特异性均较低[52,53],在HCC的诊断及监测中的应用仍处于探索阶段,其诊断价值的提高很大程度上依赖于设备与仪器的改进及呼吸运动伪影干扰的减小。但MRS可以无创地反映出HCC及周围肝组织的代谢及生化情况,因此在HCC的诊断与监测中的应用价值及前景不可忽视。
综上所述,未来的影像医学将越来越多的反映HCC的发病机理、基因水平的改变和分子通道等微观信息,影像医学将在HCC的早期筛查和定性诊断、生物学行为与预后评估、治疗方案决策、治疗监控与早期疗效评价等诸多方面发挥巨大作用。
[1]Bruix J,Sherman M.Management of hepatocellular carcinoma:an update[J].Hepatology,2011,53:1020-1022.
[2]Omata M,Lesmana LA,Tateishi R,et al.Asian Pacific Association for the Study of the Liver consensus recommendations on hepatocellular carcinoma[J].Hepatol Int,2010,4:439-474.
[3]Bruix J,Sherman M,Llovet JM,et al.Clinical management of hepatocellular carcinoma.Conclusions of the Barcelona-2000 EASL conference.European Association for the Study of the Liver[J].J Hepatol,2001,35:421-430.
[4] 中华人民共和国卫生部.原发性肝癌诊疗规范(2011年版)[J].临床肿瘤学杂志,2011,16(10):929-946.
[5]Ishigami K.Hepatocellular carcinoma with a pseudocapsule on gadolinium-enhanced MR images:correlation with histopathologic findings[J].Radiology,2009,250:435-443.
[6]Surachate S,Jeong KL,Steven SR,et al.MRI Detection of Intratumoral Fat in Hepatocellular Carcinoma:Potential Biomarker for a More Favorable Prognosis[J].AJR,2012,199:1018-1025.
[7]M Kadoya,O Matsui,T Takashima,et al.Hepatocellular carcinoma:correlation of MR imaging and histopathologic findings[J].Radiology,1992,183(3):819-825.
[8]Kojiro M.Nodule-in-Nodule Appearance in Hepatocellular Carcinoma:Its significance as a Morphologic Marker of Dedifferentiation[J].Intervirology,2004,47:179-183.
[9]Chandarana H,Robinson E,Hajdu CH,et al.Babb JS and Taouli B:Microvascular invasion in hepatocellular carcinoma:is it predictable with pretransplant MRI[J].AJR Am J Roentgenol,2011,196:1083-1089.
[10]Kornberg A,Freesmeyer M,Bärthel E et al.18F-FDG-uptake of hepatocellular carcinoma on PET predicts microvascular tumor invasion in liver transplant patients[J].Am J Transplant,2009,9:592-600.
[11]Choi BI,Lee JM.Advancement in HCC imaging:diagnosis,staging and treatment efficacy assessments:imaging diagnosis and staging of hepatocellular carcinoma[J].Journal of hepatobiliary-pancreatic sciences,2010,17:369-373.
[12]Lee JM,Choi BI.Hepatocellular nodules in liver cirrhosis:MR evaluation[J].Abdom Imaging,2011,36:282-289.
[13]Jarnagin WR,Schwartz LH,Gultekin DH,et al.Regional chemotherapy for unresectable primary liver cancer:results of a phase II clinical trial and assessment of DCE-MRI as a biomarker of survival[J].Ann Oncol,2009,20:1589-1595.
[14]Braren R,Altomonte J,Settles M,et al.Validation of preclinical multiparametric imaging for prediction of necrosis in hepatocellular carcinoma after embolization[J].J Hepatol,2011,55:1034-1040.
[15]O’Connor JP,Jackson A,Parker GJ,et al.DCE-MRI biomarkers in the clinical evaluation of antiangiogenic and vascular disrupting agents[J].Br J Cancer,2007,96:189-195.
[16]Koh TS,Thng CH,Hartono S,et al.A comparative study of dynamic contrast-enhanced MRI parameters as biomarkers for anti-angiogenic drug therapy[J].NMR Biomed,2011,24:1169-1180.
[17]Kelly RJ,Rajan A,Force J,et al.Evaluation of KRAS mutations,angiogenic biomarkers,and DCE-MRI in patients with advanced non-small-cell lung cancer receiving sorafenib[J].Clin Cancer Res,2011,17:1190-1199.
[18]Hahn OM,Yang C,Medved M,et al.Dynamic contrast-en-hanced magnetic resonance imaging pharmacodynamic biomarker study of sorafenib in metastatic renal carcinoma[J].J Clin Oncol,2008,26:4572-4578.
[19]Mita MM,Spear MA,Yee LK,et al.Phase 1 first-in-human trial of the vascular disrupting agent plinabulin(NPI-2358)in patients with solid tumors or lymphomas[J].Clin Cancer Res,2010,16:5892-5899.
[20]Ricart AD,Ashton EA,Cooney MM,et al.A phase I study of MN-029(denibulin),a novel vascular-disrupting agent,in patients with advanced solid tumors[J].Cancer Chemother Pharmacol,2011,68:959-970.
[21]Baar J,Silverman P,Lyons J,et al.A vasculature-targeting regimen of preoperative docetaxel with or without bevacizumab for locally advanced breast cancer:impact on angiogenic biomarkers[J].Clin Cancer Res,2009,15:3583-3590.
[22]Kitao A,Zen Y,Matsui O,et al.Hepatocarcinogenesis:multistep changes of drainage vessels at CT during arterial portography and hepatic arteriography-radiologic-pathologic correlation[J].Radiology,2009,252:605-614.
[23]Taouli B,Ehman RL,Reeder SB.Advanced MRI methods for assessment of chronic liver disease[J].AJR Am J Roentgenol,2009,193:14-27.
[24]Yu JS,Chung JJ,Kim JH,et al.Detection of small intrahepatic metastases of hepatocellular carcinomas using diffusion-weighted imaging:comparison with conventional dynamic MRI[J]. Magn Reson Imaging,2011,29:985-992.
[25]Bonekamp S,Jolepalem P,Lazo M,et al.Hepatocellular carcinoma:response to TACE assessed with semiautomated volumetric and functional analysis of diffusion-weighted and contrast-enhanced MR imaging data[J].Radiology,2011,260:752-761.
[26]Babsky AM,Ju S,George B,et al.Predicting response to benzamide riboside chemotherapy in hepatocellular carcinoma using apparent diffusion coefficient of water[J].Anticancer Res,2011,31:2045-2051.
[27]Lee MH,Kim SH,Park MJ,et al.Gadoxetic acid-enhanced hepatobiliary phase MRI and highb-value diffusion-weighted imaging to distinguish well-differentiated hepatocellular carcinomas from benign nodules in patients with chronic liver disease[J]. AJR Am J Roentgenol,2011,197:868-875.
[28]Nakanishi M,Chuma M,Hige S,et al.Relationship between diffusion-weighted magnetic resonance imaging and histological tumor grading of hepatocellular carcinoma[J].Ann Surg Oncol,2012,19:1302-1309.
[29]Nishie A,Tajima T,Asayama Y,et al.Diagnostic performance of apparent diffusion coefficient for predicting histological grade of hepatocellular carcinoma[J].Eur J Radiol,2011,80:29-33.
[30]Kamel IR,Bluemke DA,Ramsey D,et al.Role of diffusionweighted imaging in estimating tumor necrosis after chemoembolization of hepatocellular carcinoma[J].AJR Am J Roentgenol,2003,181:708-710.
[31]Dudeck O,Zeile M,Wybranski C,et al.Early prediction of anticancer effects with diffusion-weighted MR imaging in patients with colorectal liver metastases following selective internal ra-diotherapy[J].Eur Radiol,2010,20:2699-2706.
[32]Nasu K,Kuroki Y,Tsukamoto T,et al.Diffusion-weighted imaging of surgically resected hepatocellular carcinoma:imaging characteristics and relationship among signal intensity,apparent diffusion coefficient,and histopathologic grade[J].AJR Am J Roentgenol,2009,193:438-444.
[33]Xu Pengju,Zeng Mengsu,et al.Microvascular invasion in small hepatocellular carcinoma:Is it predictable with preoperative diffusion-weighted imaging[J].Journal of Gastroenterology and Hepatology,2014,29:330-336.
[34]Tanaka M,Nakashima O,Wada Y,et al.Pathomorphological study of Kupffer cells in hepatocellular carcinoma and hyperplastic nodular lesions in the liver[J].Hepatology,1996,24:807-812.
[35]Park HS,Lee JM,Kim SH,et al.Differentiation of well-differentiated hepatocellular carcinomas from other hepatocellular nodules in cirrhotic liver:value of SPIO-enhanced MR imaging at 3.0 Tesla[J].J Magn Reson Imaging,2009,29:328-335.
[36]Tanimoto A,Kuribayashi S.Application of superparamagnetic iron oxide to imaging of hepatocellular carcinoma[J].Eur J Radiol,2006,58:200-216.
[37]Yoo HJ,Lee JM,Lee JY,et al.Additional value of SPIO-enhanced MR imaging for the noninvasive imaging diagnosis of hepatocellular carcinoma in cirrhotic liver[J].Invest Radiol,2009,44:800-807.
[38]Yoon MA,Kim SH,Park HS,et al.Value of dual contrast liver MRI at 3.0 T in differentiating well-differentiated hepatocellular carcinomas from dysplastic nodules:preliminary results of multivariate analysis[J].Invest Radiol,2009,44:641-649.
[39]Frericks BB,Loddenkemper C,Huppertz A,et al.Qualitative and quantitative evaluation of hepatocellular carcinoma and cirrhotic liver enhancement using Gd-EOB-DTPA[J].AJR,2009,193:1053-1060.
[40]Kogita S,Imai Y,Okada M,et al.Gd-EOB-DTPA-enhanced magnetic resonance images of hepatocellular carcinoma:correlation with histological grading and portal blood flow[J].Eur Radiol,2010,20:2405-2413.
[41]Sano K,Ichikawa T,Motosugi U,et al.Imaging study of early hepatocellular carcinoma:usefulness of gadoxetic-acid-enhanced MR imaging[J].Radiology,2011,261:834-844.
[42]Lee JM,Zech CJ,Bolondi L,et al.Consensus report of the 4th international forum for gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid magnetic resonance imaging[J].Korean J Radiol,2011,12:403-415.
[43]Kitao A,Zen Y,Matsui O,et al.Hepatocellular carcinoma:signal intensity at gadoxetic acid-enhanced MR Imaging--correlation with molecular transporters and histopathologic features[J].Radiology,2010,256(3):817-826.
[44]Ishimaru H,Nakashima K,Sakugawa T,et al.Local recurrence after chemoembolization of hepatocellular carcinoma:uptake of gadoxetic acid as a new prognostic factor[J].AJR Am J Roentgenol,2014,202:744-751.
[45]Jin-Young Choi JY,Kim MJ,Young NP,et al.Gadoxetate Disodium-Enhanced Hepatobiliary Phase MRI of Hepatocellular Carcinoma:Correlation With Histological Characteristics[J]. AJR,2011,197:399-405.
[46]Choi JW,Lee JM,Kim SJ,et al.Hepatocellular carcinoma:imaging patterns on gadoxetic acid-enhanced MR Images and their value as an imaging biomarker[J].Radiology,2013,267:776-786.
[47]Barash H,Gross E,Edrei Y,et al.Functional magnetic resonance imaging monitoring of pathological changes in rodent livers during hyperoxia and hypercapnia[J].Hepatology,2008,48(4):1232-1241.
[48]Barash H,Gross E,Matot I,et al.Functional MR imaging during hypercapnia and hyperoxia:noninvasive tool for monitoring changes in liver perfusion and hemodynamics in a rat model[J].Radiology,2007,243(3):727-735.
[49]Park HJ,Kim YK,Min JH,et al.Feasibility of blood oxygenation level-dependent MRI at 3T in the characterization of hepatic tumors[J].Abdom Imaging,2014,39:142-152.
[50]Hwang J,Kim YK,Lee WJ,et al.Unenhanced magnetic resonance portography using repetitive arterial or vein labeling method at 3.0-T[J].J Comput Assist Tomogr,2013,37:856-861.
[51]Katada Y,Shukuya T,Kawashima M,et al.A comparative study between arterial spin labeling and CT perfusion methods on hepatic portal venous flow[J].Jpn J Radiol,2012,30:863-869.
[52]Reeder SB,Cruite I,Hamilton G,et al.Quantitative assessment of liver fat with magnetic resonance imaging and spectroscopy[J].J Magn Reson Imaging,2011,34:729-749.
[53]Soper R,Himmerlreich U,Painter D,et al.Pathology of hepatocellular carcinoma and its precursors using proton magnetic resonance spectroscopy and a statistical classification strategy[J].Pathology,2002,34:417-422.