郝天铎,王可人,金 虎,熊 最
(解放军电子工程学院,安徽 合肥 230037)
在纠错码理论发展过程中级联码一直是一个重点课题,其中RS+卷积级联码由于其良好的纠错性能,被广泛地应用于各种通信系统中,成为IEEE802.16中建议的FEC 码之一[1]。但很长一段时间以来人们对其译码性能的研究或是停留在译码算法上[1-3],对算法的复杂度、收敛性和鲁棒性进行分析;或是以[4-6]这类文献为代表,在不同类型的通信信道中对其译码性能进行分析,研究不同信噪比下的输出误码率规律;文献[7]不仅给出了4种不同类型信道下信噪比与输出误码率的关系,还从“比特级”的层面对RS+卷积码的纠错能力进行了分析,但[7]只是给出了纠错能力说明,并未在“比特级”层面对此级联码进行更深入的分析。已有的文献对此级联码译码性能的研究主要集中在译码算法或是不同调制不同信道下信噪比与误码率的关系上,很少有人在“比特级”的层面上进行更深入的研究,而从错误图样角度出发进行的研究更是鲜有报道。本文针对上述问题,提出了利用错误图样分布来研究RS+卷积级联码译码性能的方法。
卷积码可以表示为CC(n,k,m),其中n 代表输出比特个数,k 代表输入比特个数,m 代表约束长度,本文使用的是CC(2,1,7),其最小自由距离为10,译码方式采用的是硬判决下的维特比译码算法,可以纠正连续n×m 个比特中(df-1)/2」个错误[8],其中x」代表对x 向下取整。
RS(N,K,M)码为多进制分组码,每个符号包含m 比特的数据,输入为K 个符号,输出为N=2M-1个符号。RS码的纠错能力由它的最小距离dmin=2t+1决定,其中N-K=2t。本文使用的是RS(255,223,8)系统码[9],其最小距离为33,可以纠t个符号差错或者(t-1)M +1个连续比特差错。
由于维特比译码是序列译码,一旦出错就是一个序列的差错,相当于产生一个突发错误,且突发错误最可能的长度等于约束长度m,而RS二进衍生码纠突发错误的能力是(t-1)M+1,因此原则上应有(t-1)M+1>m,使卷积码译码差错大多数情况下能被RS码纠正。并且,如果我们选择的RS码的单位符号包含的比特数M 大于m 时,突发错误将很有可能只影响一个符号而已[10]。符合这种关系的卷积码内码加RS码外码就成了级联码的黄金搭配。本文所选用的RS(255,223,8)+ CC(2,1,7)级联码符合上述两个条件,而且在采用维特比译码时,与不编码相比可产生约7dB 的编码增益,特别适用于高斯白噪声信道如卫星通信和宇航通信[11]。
本文使用RS码作为外码、卷积码作为内码的串行级联码为研究对象,两者结合起来相当于码长Nn、信息位Kk、码率的分组长码,采用的信道为二进制对称信道(BSC)。对于RS 码而言,译码器端的输出误码率可以表示为[12]:
式(1)中,t为RS 码可以纠正的差错码元上限,ps是RS译码器输入端的码元错误概率,每个码元含有m 比特的数据,ps的上边界可以表示为[10]:
式(2)中,Pb是卷积码采用硬判决方式在维特比译码器输出端的误比特率的上界[13]。当二进制对称信道的转移概率p 远小于1时[7],
此时RS 译码器输出端的误码率可近似的表示为[13]:
式(3)中,dfree是卷积码的自由距离,βdfree是所有重量为dfree的路径的非零信息位总数。结合式(2)—式(4),可得
式(5)也可以表示成Bpdfree(t+1)/2的形式,其中
根据式(6),此 时m=8,t=16,dfree=10,βdfree=36[14],在二进制对称信道的错误转移概率p 很小的情况下,我们可以得出RS(255,223,8)+CC(2,1,7)级联码的输出误码率约为10118p85。由此可知,当p 超过0.041时,输出误码率将大于1,所以,理论值的p 取值应小于0.04。
本文只在“比特级”层面上进行分析,由于调制的加入会对错误图样分析造成影响,所以本文的分析都是在无调制的情况下进行的。同时,信道则采用二进制对称信道模型,具体系统模型如图1 所示,图中的虚线框表示可能会加入的交织器的位置,错误图样e代表在信道上必然产生的差错事件。
图1 RS+卷积串行级联码系统Fig.1 Concatenated Serial RS-C Codes System
本文中错误图样分布由不同的参数所决定,如图2所示,在错误图样e中,Block代表“块”,在文中为产生错误的块的长度,pos为错误产生的首位置,亦即错误图样中首次出现“1”的位置,Ne为块内错误比特,D 为两块之间的间隔,第一块内为随机错误,第二块内为突发错误。错误比特所在位置用“1”表示,空白位置用“0”表示。两个块的长度均为7 bit,第一块内“1”出现的次数为3,所以产生的是Ne1等于3bit的随机错误;第二块内“1”出现的次数为7,所以产生的是Ne2等于7bit的突发错误,错误图样中两个块之间的间隔D 为3bit。因此,错误图样e为:(10100100001111111)。
图2 错误图样e的不同参数示例Fig.2 Parameters of Error Pattern e
2.3.1 随机与突发错误
由于卷积码码元之间的相关性,其纠正随机错误的能力较强,而对突发错误的纠错性能较差[15]。对于随机错误而言,在一定的输入误比特率门限之内,卷积码可以有效地对其进行纠正,从而使其在进入RS译码器之前产生的误码数小于RS码可纠正的误码上限,对于本文采用的RS(255,223,8)而言,当进入RS译码器的误码数不大于16或者连续的误比特数不超过121时,才可以进行纠错。当输入误比特率超过一定门限之后,卷积码无法对其进行有效地纠错,从而在进入RS译码器之前误码数大于可纠正值,从而使得译码产生错误。
对于突发差错而言,由于卷积码对其纠错性能较差,所以在相同的输入误比特率之下,进入RS译码器的错误符号要比随机错误下产生的错误符号多,从而使级联码纠突发错误的能力变差;但是当输入误比特率超过一定门限后,卷积码的纠错能力下降,又由于随机错误产生的随机性,使得在进入RS译码器之前随机错误产生的错误符号大于突发错误,此时级联码对随机错误的纠错能力变差。
2.3.2 产生错误的块长
对于卷积码而言,当输入误比特数一定时,总存在某一长度的块,使得这些错误比特在这个块内随机分布时,进行维特比译码后输出误比特率达到最大[11]。当维特比译码后误比特数增多时,进入RS译码器的误码数也相应增多,因此,对RS+卷积级联码来讲,预测也存在同样的结论。
2.3.3 块与块之间的间隔
由于卷积码码元之间的相互约束,当产生错误的块与块之间的间隔较小时,不同块之间的距离较近,相互的影响也较大,维特比译码后输出误比特率也相对较大,RS译码后的误码率较大;当间隔变大时,产生错误的块之间距离也变大,相互的影响也会变小,此时维特比译码输出误比特率也会变小,RS译码后的误码率较小。
根据图1所示,交织器可以置于两个不同的位置,其中内交织的主要作用是对信道产生的突发错误进行离散化处理,这样使得在内译码时就出现较少的突发错误,而不至于影响到整个串行级联码的性能,因为,若信道的突发错误较大时,内译码就不能有效地纠正,反而会产生更大的成片错误,错误大大增加,这样送给外译码器译码时,就会超出外译码器的纠错容限,从而使整个串行级联码纠错系统失去作用,或者发生越纠越错的现象[16]。
而当交织器处于外交织的位置时(RS 编码器与卷积编码器中间),由于在维特比译码后会产生突发错误,此时错误经解交织器离散化之后,有可能会将错误扩散到更多的符号,从而导致进入RS 译码器的错误符号增多,使得级联码的纠错性能下降[17]。
由于在仿真时需要进行大量的重复随机性实验,所以仿真时采用蒙特卡罗仿真方法,本文使用RS+卷积级联码的一帧数据(即4 080bit)进行研究。
3.1.1 随机错误对RS+卷积级联码译码性能影响由于译码性能的理论值要求输入误比特率小于0.04(约163bit),所以理论值的输入误比特数只取到163。由图3 可见,当输入误比特数小于163(0.04)时,理论值与随机错误下的纠错性能相似,输出误码率几乎为0。当达到一定门限(约280bit)时,维特比译码后,在RS码信息位形成的误码数大于RS码可纠正的上限,译码开始出错。但RS译码后产生的误码数要少于维特比译码后的误码数,这是因为在RS系统码监督位产生的误码几乎不会影响RS码的译码性能,也就是说,只有当信息位产生的误码数大于RS系统码可以纠错的上限时,译码才会发生错误。
3.1.2 随机与突发错误的比较
从图4可以看出,当输入误比特率小于0.06时,输出误码率为0,这是因为经过维特比译码后,进入RS译码器的误码数小于RS码可以纠正的错误符号上限;当输入误比特率大于0.06 小于0.08时,突发错误产生的误码率大于随机错误,这是由于卷积码对突发错误的纠错较差;当误比特率大于0.08时,维特比译码后产生较多的错误比特,并且由于随机错误的随机性,会产生更多的误码,使RS译码器对随机错误更为敏感。图4验证了实验前的预测,即在不同输入误比特率下随机与突发错误对级联码的纠错性能影响不同。
3.1.3 产生错误的块长
本次实验中,产生错误的块长从500~2 000比特变化,块内产生200bit(输入误比特率约0.05)的随机错误,统计不同块长下的输出误码率,如图5所示。从图上可以看出,对于一定的输入误比特数(200),随着块长的增加,输出误码率先增大后减小,在块长为某一值(约1 100bit)时,输出误码率达到最大。以上仿真结果验证了实验前的预测。
图3 随机错误对RS+卷积级联码译码性能的影响Fig.3 Random Errors’Influence on The Concatenated RS-C Codes
图4 随机与突发错误对RS+卷积级联码译码性能的影响Fig.4 Comparison of Randomand Burst Errors
图5 产生错误的块长对RS+卷积级联码纠错性能的影响Fig.5 Block’s Influence on The Concatenated RS-C Codes
3.1.4 块与块之间的间隔
选择仿真参数为:产生错误的块的个数为20,块长为60bit,块内误比特数为10,在块内错误随机分布,总的输入误比特率约为0.05,间隔从1~60 bit依次取值,统计间隔与输出误码率间的关系如图6所示。由图6可知,随着间隔的变大,输出误码率的取值变得越来越小,当间隔达到一定门限时,不同块之间的影响可以忽略不计,最后趋于一个小的波动范围。以上仿真结果与理论预测相符。
由于交织器用来解决突发错误的能力比较强,下面就以突发错误作为错误图案分布,研究随机交织器与矩阵交织器对RS+卷积级联码纠错性能的影响。
从图7可以看出,不论是矩阵交织器还是随机交织器,当其为外交织器时(处于RS码与卷积码中间),纠错性能很相近,但都比不采用交织器时差。以上仿真结果验证了实验前的预测,即外交织器有可能会使错误扩散到更多符号。
从图8(a)可以看出,当交织器处于内交织的位置时,随机解交织器在一定的输入误比特率门限内(约0.07),可以将信道中的突发错误转变为随机错误,使得维特比译码的纠错性能加强,从而提高级联码纠错性能;超过门限后,由于误比特数太多,即使经解交织变成随机错误,维特比译码后的错误符号仍然大于RS码的纠错能力,并且由于随机错误的随机性,使维特比译码后的错误比特也呈随机分布,从而形成更多的错误符号进入到RS译码器,导致随机交织器下的级联码纠错能力下降。
图8(b)说明交织深度越深,级联码的纠错性能就越好,当交织深度为102时,在输入误比特率0.1以内误码为0。表1列出了不同交织深度下可以纠正的误比特个数。
图6 间隔对RS+卷积级联码译码性能的影响Fig.6 Distance’s Influence on The Concatenated RS-C Codes
图7 突发错误下外交织器对RS+卷积级联码译码性能的影响Fig.7 Outer Interleavere’s Influence on The Concatenated RS-C Codes Under Burst Errors
图8 突发错误下内交织器对RS+卷积级 联码译码性能的影响 Fig.8 Inner Interleaver’s Influence on The Concatenated RS-C Codes Under Burst Errors
表1 交织深度对RS+卷积码纠错性能的影响Tab.1 Interleave Depth’s Influence on The Concatenated RS-C Codes
本文提出了利用错误图样分布来研究RS+卷积级联码译码性能的方法。该方法在不加调制的情况下,通过设定错误图样参数,分析了不同参数下错误图样分布对其译码性能的影响;在此基础上又对突发错误下加入交织器的级联码系统进行了对比分析。仿真结果表明,错误图样的不同分布会对此级联码的译码性能产生不同的影响,突发错误下内交织器更有利于级联码的纠错。在此基础上,对级联码在完整的通信系统中的译码性能进行分析,是下一步的研究方向。
[1]Xu Changlong.Soft Decoding Algorithm for RS-CC Concatenated Codes in WIMAX System[C]// Vehicular Technology Conference.2007:740-743.
[2]Masakawa,Ochiai T.Design of Reed-Solomon Codes for OFDM Systems with Clipping and Filtering[J].IEEE Conference on Wireless Communications and Networking.2007:1361-1366.
[3]高兵.串行级联生成阵码编译码算法研究[D].北京:北京邮电大学,2011.
[4]张择书,郭树旭.可见光通信信道编码中卷积与RS 级联码分析[J].吉林大学学报,2014,32(1):36-40.
[5]俞丹丽,夏厚培.RS 与卷积级联码在Rice信道中的性能分析[J].雷达与对抗,2012,32(2):36-39.
[6]贾宏,许茹,孙海信,等.基于OFDM 的水声信道编码技术研究[J].厦门大学学报,2008,47(4):524-526.
[7]Nyirongo N,Malik Wasim Q,Edwards David.J.Concatenated RS-Convolutional Codes for Ultrawideband Multiband-OFDM [C]//IEEE International Conference on Source,2006:137-142.
[8]王新梅.纠错码与差错控制[M].北京:人民邮电出版社,1989.
[9]吴瑕.RS码的研究与应用[D].西安:西安电子科技大学,2001.
[10]Wessman M O,Svensson Arne,Agrellet Erik.Frequency diversity performance of coded multiband-OFDM systems on EEE UWB channels[C]//in Proceedings of The IEEE Vehicular Technology Conference.Los Angeles:IEEE,2004:1197-1201.
[11]曹雪虹,张宗橙.信息论与编码[M].北京:清华大学出版社,2008.
[12]Proakis J G.Digital Communications[M].Singapore:McGraw Hill,2001.
[13]Cideciyan R D,Eleftheriou E.Concatenated Reed–Solomon/Convolutional Coding for Data Transmission in CDMA-Based Cellular Systems[J].IEEE Transactions on Communications,1997,45(10):1291-1303.
[14]王新梅,肖国镇.纠错码——原理与方法[M].西安:西安电子科技大学出版社,1991.
[15]杜宇峰,刘丰.针对前向纠错编码的脉冲干扰技术研究[J].无线电工程,2013,43(7):17-20.
[16]姚中华.水声通信中串行级连纠错编码技术研究[D].西安:西北工业大学,2006.
[17]袁建国,梁天宇,何丽,等.光通信系统中交织型级联码 性 能 的 研 究[J].半 导 体 光 电,2010,31(2):273-276.