贾振伟,高树新,张永春,张显华内蒙古民族大学动物科技学院,黄牛遗传繁育研究所,通辽 028043
TET 蛋白的去甲基化机制及其在调控小鼠发育过程中的作用
贾振伟,高树新,张永春,张显华
内蒙古民族大学动物科技学院,黄牛遗传繁育研究所,通辽 028043
TET(Ten-eleven translocation)蛋白家族共有3个成员,分别为TET1、TET2和TET3,均属于α-酮戊二酸(α-KG)和 Fe2+依赖的双加氧酶,可以将 5-甲基胞嘧啶(5-methylcytosine, 5 mC)氧化为 5-羟甲基胞嘧啶(5-hydroxymethylcytosine, 5 hmC)、 5-甲 酰 基 胞 嘧 啶 (5-formylcytosine, 5 fC)及 5-羧 基 胞 嘧 啶(5-carboxylcytosine, 5 caC)。研究表明,TET蛋白通过不同机制以主动或被动的方式调控DNA去甲基化,且去甲基化的活性可能受其他因子的调控。TET蛋白广泛参与哺乳动物发育过程的调节,其中在原始生殖细胞的形成、胚胎发育、干细胞多能性及神经和脑发育等方面发挥了重要作用。TET蛋白生物功能的发现为表观遗传学研究开辟了全新的研究领域,而且相关研究结果对拓展生命科学研究具有重要意义。文章综述了 TET蛋白家族的结构、去甲基化分子机制及在小鼠发育过程中的作用,为深入了解TET蛋白的功能提供理论基础。
TET蛋白;去甲基化;表观遗传;小鼠发育
DNA甲基化是一种重要的表观遗传修饰方式,在哺乳动物体内,DNA甲基化修饰主要发生在胞嘧啶第5位碳原子上,称为5-甲基胞嘧啶(5-methylcytosine, 5 mC)。DNA甲基化参与了诸多的生物学过程,包括维持正常细胞功能、胚胎发育、遗传印记、细胞分化、X染色体失活以及肿瘤发生等。胞嘧啶的甲基化修饰是一个动态可逆过程,即5 mC还存在去甲基过程,但对其机制还知之甚少。研究表明,TET(Ten-eleven translocation)蛋白通过将5 mC氧化参与DNA去甲基化的途径[1,2],因此,TET蛋白介导的 DNA去甲基化机制成为近年来表观遗传研究领域的热点。目前,许多研究发现TET蛋白的去甲基化功能在调控哺乳动物原始生殖细胞的形成、胚胎发育、干细胞多能性及脑和神经发育等生命过程中发挥了重要作用,并且该领域取得了大量的研究进展[3~7]。基于此,本文综述了TET蛋白种类结构、去甲基化分子机制及在小鼠发育过程中的作用,为深入了解TET蛋白的功能提供理论基础。
哺乳动物TET蛋白家族共有3个成员,分别为TET1、TET2和TET3,其中TET1和TET3蛋白在N端区域含有CXXC型锌指结构。目前研究认为,TET1的锌指结构能够识别未甲基化的胞嘧啶、5 mC和5 hmC,并且更易结合在未甲基化的CpG含量高的区域[8];TET3的锌指结构能够识别CpG和非CpG未甲基化的胞嘧啶,保证了其准确的染色体定位,但具体功能尚不确定[9]。TET2不含有CXXC结构域,可能在 CXXC4蛋白辅助的作用下保证其准确的基因定位[10]。
另外,TET蛋白在靠近C端区域拥有一个催化结构域(Catalytic-dioxygenase domain),该结构域具有3个金属离子(Fe2+)和1个α-酮戊二酸(α-ketoglutarate, α-KG)的结合位点,催化结构域前还有一段富含半胱氨酸区域(Cys-rich domain)。TET蛋白催化结构域(Catalytic-domain)和半胱氨酸区组成的结构具有α-KG和Fe2+依赖的双加氧酶活性(图1),在α-KG 和Fe2+的辅助下,TET蛋白通过将5 mC氧化为5 hmC参与DNA去甲基化的途径。
图1 TET家族蛋白结构
目前普遍认为,TET蛋白以主动或被动的方式催化 DNA去甲基化,且其过程存在多种途径和机制,涉及多种蛋白的参与(图 2)。在 TET蛋白催化DNA主动去甲基化机制方面,Guo等[11]研究认为,TET蛋白将5 mC氧化为5 hmC,然后5 hmC在活化诱导脱氨酶(Activation-induced deaminase, AID)的作用下脱氨基,形成5-羟甲基尿嘧啶(5-hydroxymethyluracil, 5 hmU),而且AID也能将5 mC脱氨基,5 hmC/ 5 mC脱氨基产物经碱基切除修复(Base-excision repair, BER)途径实现DNA主动去甲基化。另外,TET蛋白氧化5 mC为5 hmC,也可以将5 hmC继续氧化为5-甲酰基胞嘧啶(5-formylcytosine, 5 fC)和5-羧基胞嘧啶(5-carboxylcytosine, 5 caC),5 fC/5 caC在胸腺嘧啶 DNA糖基化酶(Thymine DNA glycosylase, TDG)以及 BER通路的作用下被修复产生未修饰的胞嘧啶,进而实现DNA主动去甲基化[2,12,13]。在TET蛋白催化 DNA被动去甲基化机制方面,Valinluck 等[14,15]发现,细胞分裂期间TET蛋白将5 mC氧化为5 hmC,5 hmC能够阻滞Dnmt1的维持甲基化作用,致使随后的DNA复制循环中稀释/降低基因组中甲基化胞嘧啶的密度,进而实现 DNA被动去甲基化。在受精卵早期发育过程中,随着 DNA的复制,基因组的5 hmC、5 fC和5 caC水平逐渐减少,这种被动的去甲基化是受精卵早期发育过程中的重要机制[16]。
图2 TET蛋白调控DNA去甲基化途径和机制
另外,TET蛋白去甲基化的活性可能受其他因子的调控。例如,维生素C是TET蛋白的辅助因子,通过增强TET1/2氧化5 mC的能力促进胚胎干细胞(Embryonic stem cells, ESCs)DNA去甲基化[17]。锌指蛋白转录抑制因子(Positive regulatory domain zinc finger protein, PRDM)家族成员 PRDM14能够促进TET1/2募集到靶基因位点,增强 TET1/2主动去甲基化的能力,进而诱导ESCs的多能性相关基因、生殖细胞特异性基因及印记基因去甲基化[18]。糖基转移酶(O-GlcNAc transferase, OGT)能够催化 TET3 O-GlcNAc糖基化,同时促进TET3向细胞核外转运,进而抑制其去甲基化的能力[19]。
3.1 原始生殖细胞及配子发育
一般认为,小鼠胚胎发育至 7.25 d(Embryonic day 7.25, E7.25)外胚层原始生殖细胞(Primordial germ cell, PGCs)开始特化,随后逐渐向胚内迁移,在胚胎期E11.5大量PGCs进入生殖嵴,PGCs迁移期间经历广泛的表观重编程,包括DNA去甲基化、基因组印记消除及染色体重构[20~22]。近年研究发现,TET1和TET2在小鼠E9.25-11.5期的PGCs高表达,但TET3不表达,说明TET1/2可能是PGCs DNA去甲基化的主要介导者[7,23,24]。另外,基于TET1/2在小鼠 PGCs的表达,Yamaguchi等[25]分析了不同发育时期PGCs的5 mC和5 hmC水平,发现5 mC/5 hmC水平在E8.5较低,5 hmC水平在E9.5-10.5期间开始增加,发育至E11.5达到峰值后逐渐下降。然而,Gu等[26]发现,TET1/2在 PGCs表达较高,但在卵母细胞内表达较少,相反,TET3在卵母细胞内表达较高,说明TET3可能是卵母细胞DNA去甲基化的主要介导者[27]。
另外,一些学者将小鼠 Tet1/2基因突变或敲除发现,在TET1/2蛋白表达缺陷的条件下,并没有影响 PGCs基因组范围内去甲基化,但导致特定位点基因去甲基化异常,同时影响了一些与减数分裂和印记相关的基因表达[7,28]。但小鼠Tet1/2/3基因被敲除后,PGCs能够形成正常的精子或卵母细胞[26,29,30]。综上所述,TET蛋白参与了PGCs表观重编程,但没有显著影响PGCs的发育及配子的形成。
3.2 受精卵发育
雌雄配子受精后形成受精卵的过程也存在基因组DNA去甲基化现象,在受精后启动DNA复制前,父源基因组DNA迅速的发生主动去甲基化,而母源基因组仍然保持甲基化状态,随着卵裂的进行,母源基因组发生被动的脱甲基化[31]。目前研究认为,5 mC氧化似乎是父源基因组DNA去甲基化的关键步骤,TET3可能是受精卵 DNA去甲基化的主要介导者。例如,受精卵雄原核5 mC水平减少的同时,5 hmC、5 fC和5 caC水平迅速增加[32,33]。TET1/2在受精卵表达较低,但TET3表达较高[33],并且Tet3基因被敲除后阻碍了受精卵雄原核5 mC转化为5 hmC[26]。另外,尽管BER途径参与了附植前胚胎主动去甲基化,但5 hmC、5 fC和5 caC似乎没有迅速地被未甲基化的碱基C代替[34,35],相反它们持久存在父源基因组中,并且随着卵裂含量逐渐下降[26,32],揭示附植前胚胎发育期间,这些修饰碱基可能通过DNA复制的机制被稀释消除。但TET3氧化5 mC达到多大程度后进行DNA复制,导致受精卵父源基因组被动去甲基化尚不确定。
3.3 胚胎附植及胚胎干细胞发育
随着受精卵发育至囊胚阶段,TET1/2/3呈现差异表达模式,其中TET1/2在内细胞团和ESCs上高表达,但 TET3表达较少[3,32,33],说明 TET1/2可能与维持ESCs多能性有关。Ficz等[4]采用基因敲降的方法研究TET1/2在维持ESCs多能性的作用,发现Tet1/2同时敲降的条件下一些与ESCs多能性相关的基因表达下调,进而导致 ESCs分化。另外,由于TET1能够将5 mC氧化为5 hmC,Ito等[3]研究发现,小鼠TET家族蛋白都能将5 mC催化为5 hmC,其中TET1蛋白在小鼠ESCs上特异表达,Tet1基因敲降后导致5 hmC水平下降、Nanog基因近端启动子区域甲基化水平增加,进而使Nanog基因表达量下降,最终导致囊胚内细胞团细胞分化为滋养层细胞,揭示TET蛋白的氧化产物5 hmC可能参与了小鼠ESCs的DNA去甲基化,进而影响了基因的表达调控。随后,Wu和Zhang[36]发现,TET1和5 hmC在小鼠ESCs一些多能性基因启动子区域富集丰富。
为了深入了解5 hmC的功能,许多学者对其在小鼠ESCs基因组中的分布进行了研究。最近研究发现,5 hmC在基因组不同区域的分布水平受TET1/TET2调控,即TET1主要调控基因启动子区的5 hmC水平,TET2主要调控基因内(Gene body) 的5 hmC水平[37]。在启动子区域,5 hmC主要富集于CpG含量为低中度水平的启动子区域,而且这些基因表达水平较低。另外,5 hmC在组蛋白二价标记(H3K4me3+/ H3K27me3+)的启动子区也大量富集。H3K4me3+是激活基因表达的一种组蛋白修饰;H3K27me3+由 PRC2(Polycomb repressive complex 2)蛋白复合体催化形成,是抑制基因表达的一种组蛋白修饰。5 hmC存在于组蛋白二价标记的基因启动子区域,说明TET1和5 hmC可能具有转录沉默的作用。Wu 和 Zhang[36]发现,TET1不仅与转录活性高的基因启动子结合,而且也与 PRC2抑制基因的启动子结合。Wu等[38]认为,5 hmC在小鼠ESCs的TET1/ PRC2结合的基因启动子区含量丰富,Tet1基因敲除后导致基因组范围内TET1结合基因的启动子区5 hmC水平的减少。Wu等[6]发现,小鼠ESCs的Tet1基因敲除后,干扰了 TET1募集 PRC2核心亚基(Ezh2)至组蛋白二价标记基因的启动子区域。以上研究揭示,TET1和5 hmC可能通过PRC2的介导抑制ESCs分化基因的表达。5 hmC除了在基因的启动子区域富集外,其在基因内部特别是外显子区域也高度富集[4],而且在转录起始位点、5′非翻译区及活跃的增强子和绝缘子等顺式调控元件位点富集程度也较高[4, 38, 39]。5 hmC在基因内部和顺式调控元件位点富集与转录激活有关[4,38,39]。另外,许多学者在研究TET1和5 hmC调控ESCs基因表达的功能时发现,小鼠ESCs的Tet1基因被敲除后导致与细胞分化相关的基因(Cdx2、Sox17及Krt8)表达上调,同时使多能性相关的转录因子(Nanog、Tcl1及 Esrrb)表达下调[4,6,38],进一步说明TET1和5 hmC作用于靶基因,通过促进或抑制的双重机制调控ESCs基因表达,进而有效维持干细胞的多能性状态。
此外,Dawlaty等[29]对Tet1基因敲除小鼠繁殖力的研究发现,Tet1基因敲除的雌、雄小鼠交配后产生的后代数量显著减少,一些Tet1基因敲除小鼠胚胎发育致死或生殖细胞发育受损。然而,另有学者认为,Tet1/Tet2基因敲降后,并没有影响小鼠多能性因子的表达及ESCs分化[40,41],而且Tet1/Tet2基因被敲除后,小鼠发育正常,并且具有繁殖能力[5,29]。原因可能归咎于 Tet1/Tet2基因被敲除后,仅导致部分5 hmC水平下降,而TET3蛋白起到了补偿作用[3,8,29]。另外,Gu等[26]对 Tet3基因敲除小鼠的发育进行了研究,发现Tet3基因敲除后导致小鼠出生后致死,TET3参与了胚胎形成期间多个组织的发育。综上所述,TET蛋白家族在精确调控小鼠胚胎发育方面发挥了重要的作用,但可能在功能上具有冗余性。
3.4 出生后发育
目前,一些研究证明小鼠不同组织、器官能够检测到5 hmC,而且在不同发育时期5 hmC水平存在差异[3,42];另外,Ito等[3]发现,TET2/3在成年小鼠不同组织广泛表达,且表达水平亦存在差异,揭示TET2/3和5 hmC也可能通过调控靶基因表达影响了小鼠出生后发育。鉴于此,为了研究TET蛋白在调控小鼠出生后神经和脑的发育方面的作用,Song等[43]分析了 5 hmC在小鼠脑上的水平分布情况,发现小鼠出生后发育至成年阶段,小脑5 hmC水平逐渐增加。Hahn等[44]采用基因敲除的方法,发现Tet2/3基因敲除后阻碍了小鼠神经祖细胞分化为神经元细胞。另外,许多研究发现,Tet2基因敲除后导致小鼠骨髓和脾脏5 hmC水平下降,同时影响了造血细胞的分化和成熟,导致髓系恶性血液病[5,45,46],揭示TET2也可能通过调控DNA的去甲基化影响与造血功能相关的基因表达,但具体的分子机制尚不明确。由于Tet3基因敲除后导致小鼠出生后死亡,因此,关于 TET3蛋白在调控小鼠出生后发育方面的具体作用机制尚不确定。随着基因打靶等条件性敲除技术的成熟,对Tet3基因在小鼠不同组织器官进行敲除,将可能识别 TET3蛋白调控小鼠出生后发育的功能。
TET蛋白催化 DNA去甲基化在调控小鼠发育过程中发挥了重要作用,其催化DNA去甲基化存在多种机制,但每种机制对DNA去甲基化的贡献及各种机制如何协同完成靶基因的去甲基化尚不确定。TET依次氧化5 mC为5 hmC、5 fC和5 caC,这些修饰碱基除了作为DNA去甲基化的中间产物外,也可能作为组蛋白的表观遗传标志调控染色体的结构和功能。近年研究表明,TET蛋白与O-GlcNAc糖基化转移酶互作促进了组蛋白 O-GlcNAc糖基化修饰[47],说明TET蛋白除了具有去甲基化的作用,可能存在其他的生物学功能,但具体的生物学功能还需要深入研究。
另外,TET蛋白催化DNA去甲基化的活性受到其他蛋白复合体的影响,但TET蛋白如何与其他蛋白复合体互作调控 DNA的去甲基化尚不明确。而且,在哺乳动物发育期间,环境刺激、细胞代谢状态及发育信号是否能够影响TET蛋白催化5 mC的能力亦不确定,也需要进行深入研究。此外,除了通过生物化学和基因组学等手段研究TET蛋白生物学功能,还需要进一步建立 Tet1/2/3基因条件性敲除小鼠模型,深入了解TET蛋白在小鼠不同发育阶段和组织中的功能作用。
总之,随着分子生物学、基因组学、表观遗传学的发展及 Tet家族基因条件性敲除小鼠模型的建立,人们对TET蛋白的功能和作用机制的认识将会更全面、更深入。
[1]Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, Agarwal S, Iyer LM, Liu DR, Aravind L, Rao A. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science, 2009, 324(5929): 930-935.
[2]Ito S, Shen L, Dai Q, Wu SC, Collins LB, Swenberg JA, He C, Zhang Y. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science, 2011, 333(6047): 1300-1303.
[3]Ito S, D’Alessio AC, Taranova OV, Hong K, Sowers LC, Zhang Y. Role of Tet proteins in 5 mC to 5 hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature, 2010, 466(7310): 1129-1133.
[4]Ficz G, Branco MR, Seisenberger S, Santos F, Krueger F, Hore TA, Marques CJ, Andrews S, Reik W. Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation. Nature, 2011, 473(7347): 398-402. [5]Moran-Crusio K, Reavie L, Shih A, Abdel-Wahab O, Ndiaye-Lobry D, Lobry C, Figueroa ME, Vasanthakumar A, Patel J, Zhao XY, Perna F, Pandey S, Madzo J, Song CX, Dai Q, He C, Ibrahim S, Beran M, Zavadil J, Nimer SD, Melnick A, Godley LA, Aifantis I, Levine RL. Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation. Cancer Cell, 2011, 20(1): 11-24.
[6]Wu H, D'Alessio AC, Ito S, Xia K, Wang ZB, Cui KR, Zhao KJ, Sun YE, Zhang Y. Dual functions of Tet1 in transcriptional regulation in mouse embryonic stem cells. Nature, 2011, 473(7347): 389-393.
[7]Yamaguchi S, Hong K, Liu R, Shen L, Inoue A, Diep D, Zhang K, Zhang Y. Tet1 controls meiosis by regulating meiotic gene expression. Nature, 2012, 492(7429): 443-447.
[8]Xu YF, Wu FZ, Tan L, Kong LC, Xiong LJ, Deng J, Barbera AJ, Zheng LJ, Zhang HK, Huang S, Min JR, Nicholson T, Chen TP, Xu GL, Shi Y, Zhang K, Shi YG. Genome-wide regulation of 5 hmC, 5 mC, and gene expression by Tet1 hydroxylase in mouse embryonic stem cells. Mol Cell, 2011, 42(4): 451-464.
[9]Xu YF, Xu C, Kato A, Tempel W, Abreu JG, Bian CB, Hu YG, Hu D, Zhao B, Cerovina T, Diao JB, Wu FZ, He HH, Cui QC, Clark E, Ma C, Barbara A, Veenstra GJC, Xu GL,Kaiser UB, Liu XS, Sugrue SP, He X, Min JR, Kato Y, Shi YG. Tet3 CXXC domain and dioxygenase activity cooperatively regulate key genes for Xenopus eye and neural development. Cell, 2012, 151(6): 1200-1213.
[10]Ko M, An J, Bandukwala HS, Chavez L, Äijö T, Pastor WA, Segal MF, Li HM, Koh KP, Lähdesmäki H, Hogan PG, Aravind L, Rao A. Modulation of TET2 expression and 5-methylcytosine oxidation by the CXXC domain protein IDAX. Nature, 2013, 497(7447): 122-126.
[11]Guo JU, Su YJ, Zhong C, Ming GL, Song HJ. Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell, 2011, 145(3): 423-434.
[12]He YF, Li BZ, Li Z, Liu P, Wang Y, Tang QY, Ding JP, Jia YY, Chen ZC, Li L, Sun Y, Li XX, Dai Q, Song CX, Zhang KL, He C, Xu GL. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science, 2011, 333(6047): 1303-1307.
[13]Zhang L, Lu XY, Lu JY, Liang HH, Dai Q, Xu GL, Luo C, Jiang HL, He C. Thymine DNA glycosylase specifically recognizes 5-carboxylcytosine-modified DNA. Nat Chem Biol, 2012, 8(4): 328-330.
[14]Valinluck V, Tsai HH, Rogstad DK, Burdzy A, Bird A, Sowers LC. Oxidative damage to methyl-CpG sequences inhibits the binding of the methyl-CpG binding domain (MBD) of methyl-CpG binding protein 2 (MeCP2). Nucleic Acids Res, 2004, 32(14): 4100-4108.
[15]Valinluck V, Sowers LC. Endogenous cytosine damage products alter the site selectivity of human DNA maintenance methyltransferase DNMT1. Cancer Res, 2007, 67(3): 946-950.
[16]Inoue A, Zhang Y. Replication-dependent loss of 5-hydroxymethylcytosine in mouse preimplantation embryos. Science, 2011, 334(6053): 194.
[17]Blaschke K, Ebata KT, Karimi MM, Zepeda-Martínez JA, Goyal P, Mahapatra S, Tam A, Laird DJ, Hirst M, Rao A, Lorincz MC, Ramalho-Santos M. Vitamin C induces Tet-dependent DNA demethylation and a blastocyst-like state in ES cells. Nature, 2013, 500(7461): 222-226.
[18]Okashita N, Kumaki Y, Ebi K, Nishi M, Okamoto Y, Nakayama M, Hashimoto S, Nakamura T, Sugasawa K, Kojima N, Takada T, Okano M, Seki Y. PRDM14 promotes active DNA demethylation through the ten-eleven translocation (TET)-mediated base excision repair pathway in embryonic stem cells. Development, 2014, 141(2): 269- 280.
[19]Zhang Q, Liu XG, Gao WQ, Li PS, Hou JL, Li JW, Wong JM. Differential regulation of the ten-eleven translocation (TET) family of dioxygenases by O-linked β-N-acetylglucosamine transferase (OGT). J Biol Chem, 2014, 289(9): 5986-5996.
[20]Hajkova P, Erhardt S, Lane N, Haaf T, El-Maarri O, Reik W, Walter J, Surani MA. Epigenetic reprogramming in mouse primordial germ cells. Mech Dev, 2002, 117(1-2): 15-23.
[21]Hajkova P, Ancelin K, Waldmann T, Lacoste N, Lange UC, Cesari F, Lee C, Almouzni G, Schneider R, Surani MA. Chromatin dynamics during epigenetic reprogramming in the mouse germ line. Nature, 2008, 452(7189): 877-881.
[22]Kota SK, Feil R. Epigenetic transitions in germ cell development and meiosis. Dev Cell, 2011, 19(5): 675-686.
[23]Hackett JA, Sengupta R, Zylicz JJ, Murakami K, Lee C, Down TA, Surani MA. Germline DNA demethylation dynamics and imprint erasure through 5-hydroxymethylcytosine. Science, 2013, 339(6118): 448-452.
[24]Vincent JJ, Huang Y, Chen PY, Feng SH, Calvopiña JH, Nee K, Lee SA, Le T, Yoon AJ, Faull K, Fan GP, Rao A, Jacobsen SE, Pellegrini M, Clark AT. Stage-specific roles for tet1 and tet2 in DNA demethylation in primordial germ cells. Cell Stem Cell, 2013, 12(4): 470-478.
[25]Yamaguchi S, Hong K, Liu R, Inoue A, Shen L, Zhang K, Zhang Y. Dynamics of 5-methylcytosine and 5-hydroxymethylcytosine during germ cell reprogramming. Cell Res, 2013, 23(3): 329-339.
[26]Gu TP, Guo F, Yang H, Wu HP, Xu GF, Liu W, Xie ZG, Shi LY, He XY, Jin SG, Iqbal K, Shi YG, Deng ZX, Szabó PE, Pfeifer GP, Li JS, Xu GL. The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes. Nature, 2011, 477(7366): 606-610.
[27]Yu C, Zhang YL, Pan WW, Li XM, Wang ZW, Ge ZJ, Zhou JJ, Cang Y, Tong C, Sun QY, Fan HY. CRL4 complex regulates mammalian oocyte survival and reprogramming by activation of TET proteins. Science, 2013, 342(6165): 1518-1521.
[28]Dawlaty MM, Breiling A, Le T, Raddatz G, Barrasa MI, Cheng AW, Gao Q, Powell BE, Li Z, Xu M, Faull KF, Lyko F, Jaenisch R. Combined deficiency of Tet1 and Tet2 causes epigenetic abnormalities but is compatible with postnatal development. Dev Cell, 2013, 24(3): 310-323.
[29]Dawlaty MM, Ganz K, Powell BE, Hu YC, Markoulaki S, Cheng AW, Gao Q, Kim J, Choi SW, Page DC, Jaenisch R. Tet1 is dispensable for maintaining pluripotency and its loss is compatible with embryonic and postnatal development. Cell Stem Cell, 2011, 9(2): 166-175.
[30]Ko M, Bandukwala HS, An J, Lamperti ED, ThompsonEC, Hastie R, Tsangaratou A, Rajewsky K, Koralov SB, Rao A. Ten-Eleven-Translocation 2 (TET2) negatively regulates homeostasis and differentiation of hematopoietic stem cells in mice. Proc Natl Acad Sci USA, 2011, 108(35): 14566-14571.
[31]Oswald J1, Engemann S, Lane N, Mayer W, Olek A, Fundele R, Dean W, Reik W, Walter J. Active demethylation of the paternal genome in the mouse zygote. Curr Biol, 2000, 10(18): 475-478.
[32]Iqbal K, Jin SG, Pfeifer GP, Szabó PE. Reprogramming of the paternal genome upon fertilization involves genome-wide oxidation of 5-methylcytosine. Proc Natl Acad Sci USA, 2011, 108(9): 3642-3647.
[33]Wossidlo M, Nakamura T, Lepikhov K, Marques CJ, Zakhartchenko V, Boiani M, Arand J, Nakano T, Reik W, Walter J. 5-Hydroxymethylcytosine in the mammalian zygote is linked with epigenetic reprogramming. Nat Commun, 2011, 2(3): 241.
[34]Gehring M, Reik W, Henikoff S. DNA demethylation by DNA repair. Trends Genet, 2009, 25(2): 82-90.
[35]Wu SC, Zhang Y. Active DNA demethylation: many roads lead to Rome. Nat Rev Mol Cell Biol, 2010, 11(9): 607-620. [36]Wu H, Zhang Y. Tet1 and 5-hydroxymethylation: A genome-wide view in mouse embryonic stem cells. Cell Cycle, 2011, 10(15): 2428-2436.
[37]Huang Y, Chavez L, Chang X, Wang X, Pastor WA, Kang J, Zepeda-Martínez JA, Pape UJ, Jacobsen SE, Peters B, Rao A. Distinct roles of the methylcytosine oxidases Tet1 and Tet2 in mouse embryonic stem cells. Proc Natl Acad Sci USA, 2014, 111(4): 1361-1366.
[38]Wu H, D'Alessio AC, Ito S, Wang Z, Cui K, Zhao K, Sun YE, Zhang Y. 2011. Genome-wide analysis of 5-hydroxymethylcytosine distribution reveals its dual function in transcriptional regulation in mouse embryonic stem cells. Genes Dev, 2011, 25(7): 679-684.
[39]Pastor WA, Pape UJ, Huang Y, Henderson HR, Lister R, Ko M, McLoughlin EM, Brudno Y, Mahapatra S, Kapranov P, Tahiliani M, Daley GQ, Liu XS, Ecker JR, Milos PM, Agarwal S, Rao A. Genome-wide mapping of 5-hydroxymethylcytosine in embryonic stem cells. Nature, 2011, 473(7347): 394-397.
[40]Koh KP, Yabuuchi A, Rao S, Huang Y, Cunniff K, Nardone J, Laiho A, Tahiliani M, Sommer CA, Mostoslavsky G, Lahesmaa R, Orkin SH, Rodig SJ, Daley GQ, Rao A. Tet1 and Tet2 late 5-hydroxymethylcytosine production and cell lineage specification in mouse embryonic stem cells. Cell Stem Cell, 2011, 8(2): 200-213.
[41]Williams K, Christensen J, Pedersen MT, Johansen JV, Cloos PA, Rappsilber J, Helin K. TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity. Nature, 2011, 473(7347): 343-348.
[42]Globisch D, Münzel M, Müller M, Michalakis S, Wagner M, Koch S, Brückl T, Biel M, Carell T. Tissue distribution of 5-hydroxymethylcytosine and search for active demethylation intermediates. PLoS One, 2010, 5(12): e15367.
[43]Song CX, Szulwach KE, Fu Y, Dai Q, Yi CQ, Li XK, Li YJ, Chen CH, Zhang W, Jian X, Wang J, Zhang L, Looney TJ, Zhang BC, Godley LA, Hicks LM, Lahn BT, Jin P, He C. Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine. Nat Biotechnol, 2011, 29(1): 68-72.
[44]Hahn MA, Qiu RX, Wu WX, Li AX, Zhang HY, Wang J, Jui J, Jin SG, Jiang Y, Pfeifer GP, Lu Q. Dynamics of 5-hydroxymethylcytosine and chromatin marks in mammalian neurogenesis. Cell Rep, 2013, 3(2): 291-300.
[45]Li Z, Cai XQ, Cai CL, Wang JP, Zhang WY, Petersen BE, Yang FC, Xu MJ. Deletion of Tet2 in mice leads to dysregulated hematopoietic stem cells and subsequent development of myeloid malignancies. Blood, 2011, 118(17): 4509-4518.
[46]Quivoron C, Couronné L, Della Valle V, Lopez CK, Plo I, Wagner-Ballon O, Do Cruzeiro M, Delhommeau F, Arnulf B, Stern MH, Godley L, Opolon P, Tilly H, Solary E, Duffourd Y, Dessen P, Merle-Beral H, Nguyen-Khac F, Fontenay M, Vainchenker W, Bastard C, Mercher T, Bernard OA. TET2 inactivation results in pleiotropic hematopoietic abnormalities in mouse and is a recurrent event during human lymphomagenesis. Cancer Cell, 2011, 20(1): 25-38.
[47]Chen Q, Chen YB, Bian CJ, Fujiki R, Yu XC. TET2 promotes histone O-GlcNAcylation during gene transcription. Nature, 2013, 493(7433): 561-564.
(责任编委: 方向东)
Mechanisms of TET protein-mediated DNA demethylation and its role in the regulation of mouse development
Zhenwei Jia, Shuxin Gao, Yongchun Zhang, Xianhua Zhang
Institute of Yellow Cattle Genetics-Breeding and Reproduction, College of Animal Science and Technology, Inner Mongolia University for the Nationalities, Tongliao 028000, China
TET (ten-eleven translocation) protein family includes three members TET1, TET2 and TET3, which belong to alpha-ketoglutaric acid ( α-KG )- and Fe2+-dependent dioxygenase superfamily, and have the capacity to convert 5-methylcytosine (5 mC) to 5-hydroxymethylcytosine (5 hmC), 5-formylcytosine (5 fC) and 5-carboxylcytosine (5 caC). At present, growing lines of evidence indicate that TET proteins are involved in the control of active or passive DNA demethylation via different mechanisms; moreover, their activities may be regulated by some cellular factors. TET proteins play vital roles in modulating mammal development, including primordial germ cell formation, embryonic development, stem cells pluripotency, nerve and brain development, etc. The identification of biological roles of TET proteins will open a new field in epigenetic research, and these studies on TET proteins are of great significance to life science research. Here, we review TET proteins from their structure, molecular mechanisms ofDNA demethylation and function in the regulation of mouse development, which may provide the basis for understanding the functions of TET proteins.
TET proteins; demethylation; epigenetics; mouse development
2014-04-08;
2014-09-20
内蒙古民族大学博士科研启动基金项目(编号:BS299)资助
贾振伟,博士,研究方向:配子与胚胎生物技术研究。E-mail: zhenwei1999@sina.com
张显华,教授,研究方向:配子与胚胎生物技术研究。E-mail: zxh7469@163.com
10.16288/j.yczz.2015.01.005
时间: 2014-12-16 13:07:36
URL: http://www.cnki.net/kcms/doi/10.3724/SP.J.1005.2014.0000.html