“电工电子技术”课程中“等效替代法”教与学的探究

2014-06-30 12:39张振英
中国电力教育 2014年6期
关键词:电工电子电工电子技术教学

摘要:“等效替代法”是“电工电子技术”课程理论研究与电路分析中运用较多的研究方法。通过运用实例阐述了“等效替代法”的科学思维,提出了教学中不但要让学生懂得已有的研究成果,还应重视引导学生领悟“等效替代法”的内涵与精髓的教学理念。

关键词:电工电子;等效替代;教学

作者简介:张振英(1962-),女,山东临沂人,江西铜业集团公司高级技工学校,讲师。(江西 贵溪 335421)

中图分类号:G712 文献标识码:A 文章编号:1007-0079(2014)06-0114-02

“等效替代法”是将复杂问题及其物理过程转化为等效简单、易于研究的物理问题和物理过程来研究的方法,是科学研究中常用的思维方法之一。古今中外,运用“等效替代法”在诸多领域解决科技难题的实例不胜枚举,其中不少研究成果甚至成为相应学科理论的重要组成部分。因此,这一研究方法在科研领域占有十分重要的地位。

在“电工电子技术”课程中,将“等效替代法”运用于复杂电路分析及一些物理量的计量等方面的例子很多。在教学中,教师不仅要教会学生运用这些方法进行电路分析与计算,还应让学生去体会这种研究方法的思想内涵与精髓。

一、课程中運用“等效替代法”的实例集锦

1.实际电气设备、电器与电路模型

实际电路都是由电气设备和器件组成的,其种类繁多,电磁关系复杂,这给电路分析带来了很大困难。采用电路模型等效替代电气设备和器件,便有效地解决了这一难题。这一方法是将电气设备或器件中的每一种基本的电磁性质用一个对应的理想元件来表示,再由理想元件构成电路即电路模型来等效替代电气设备或器件。基本理想元件分为有源元件和无源元件两大类。其中有源元件包括电压源和电流源,无源元件包括电阻、电感和电容,它们各自表征一种电磁性质。如电压源US或电流源IS表示产生电能的性质。电阻R表示电气设备或器件消耗电能的性质,用电感L表示其将电能转变为磁能的性质,用电容C表示其将电能转变为电场能的性质。用这些理想元件的有机组合等效替代电气设备或器件,从而构成便于分析的电路。例如蓄电池或发电机用一个电压源US与一个内阻R0相串联的电路表示,如图1。线圈用一个电感L与一个电阻R相串联的电路表示,如图2。

2.线性无源二端网络与等效阻抗

对于一个具有多个阻抗联结的无源线性二端网络,可用一个阻抗来等效,如图3、图4所示。这其中包括阻抗的串、并、混联电路的等效及Y—△联结之间的相互等效等。例如电路图5与图6的a、b两端之间的等效阻抗分别为Zab=Z1+Z2和Zab=Z1//Z2。

3.有源二端网络与等效电源

对于一个有源线性二端网络,对外电路而言,可用一个理想电压源US与一个电阻R0相串联的电路来等效(戴维宁定理),也可用一个理想电流源IS与一个电阻R0相并联的电路来等效(诺顿定理),如图7、图8(戴维宁等效电路)、图9(诺顿等效电路)所示。且电压源与电流源之间在一定的条件下,对外电路而言也相互等效。

4.三极管放大状态下的微变等效电路

对于三极管在放大状态下(三极管工作在特性曲线的线性区),为了便于分析三极管放大电路的电压放大倍数、输入电阻ri和输出电阻ro等动态性能指标,将三极管这一非线性元件用线性元件来等效替代,如图10、图11所示。在此基础上画出放大电路的微变等效电路,从而可方便地计算出各项动态性能指标。

5.变压器的阻抗变换

在电子电路中,为使负载ZL获得最大功率,而在信号源的输出端通过变压器耦合来实现阻抗匹配,使其等效阻抗等于信号源的内阻抗,与负载阻抗及变压器的变比k的关系式为:,当一定时,选择合适的k,便可实现阻抗匹配。如图12、图13所示。

6.正弦交流电的有效值

正弦交流电的电流、电压与电动势的大小和方向都是随时间按正弦规律变化的物理量,如正弦交流电流,其波形如图14所示。为了便于对交流电流的计量,于是采用稳恒直流电流从能量上与之等效,即将交流电流与直流电流分别通入相同电阻R,且通电的时间T相同,若两电阻产生的热效应Q相同,则称此直流电流I为该正弦交流电流i的有效值,如图14所示。通过数学推演得出交流电流的有效值与自身的最大值之间具有倍的关系,即有效值,并推知正弦交流电压、电动势的有效值分别为:,。这样,不断变化的正弦量便有了确定的计量值。

二、课程中运用“等效替代法”的科学思维

以上所列只是本课程运用等效替代法的一些典型实例,还有若干电气设备或器件的等效电路不再一一列举。在教学中教师一方面要让学生理解这些实例的基本内容与要点,还要启发学生品味其中的奥妙,让学生感到这些实例有如一颗颗璀璨明珠,都闪耀着光辉的科学思想。通过教学,应让学生在领悟到“等效替代法”有以下几方面的内涵与精髓。

1.透过纷繁现象,感悟事物本质

电路中电气设备或器件的电磁性能通常都不是单一的,而是多种性能并存,且交织在一起密不可分。例如一个蓄电池,在产生电能的同时也要消耗电能,这两种现象相伴相随不可分割。又如一个铁心线圈通入交流电后既有电能与磁能的相互转换现象,又有因线圈电阻、铁心被磁化时磁畴的运动摩擦以及铁心中产生的涡流等因素消耗电能的现象,还有少许漏磁现象等。可见一个看似极为简单的铁心线圈,通电之后其电磁现象却是如此复杂。然而,透过这些现象发现其本质上反映出来的只是能量的转换。不同的电磁现象反映着不同的能量转换形式,这样,采用不同的理想元件表征不同的能量转换形式,也就表征了不同的电磁现象,从而便可将相互交织的电磁现象通过元件表征分离开来,再将这些元件合理组合便可构成易于理解和研究的等效电路了。例如,由铁心线圈构成的变压器可由图15电路模型来等效,其中L1S、L2S表征原、副边的漏磁,R1、R2表征原、副边的功率损耗(铜损与铁损)。

在教学中,要引导学生认识到,电源向电路供电就是供给能量,供电后电路中产生的各种电磁现象都是能量转换的客观反映。

2.抓住事物本质特性,抛开非本质因素

由于电气设备或器件电磁性能的复杂性,其等效电路也往往比较复杂。然而多种电磁现象在电路中作用的强弱程度往往存在着很大的差异,在一定条件下,电路分析时可略去一些次要因素,以便突出对主要特性的研究。如图15,若略去漏磁及变压器的功率损耗,则其等效电路如图16所示;若再略去励磁电流i0,则其等效电路如图17所示。这样便更能突显出变压器变换电压与变换电流这一本质特性,即:,。式中的“≈”的含义就是表明对非本质特性的“抛开”。当然,这些非本质特性因素对本质特性的影响是客观存在的,所谓“抛开”不过是分析事物时的一种合理取舍,在实际工作中应当承认甚至要重视它们的存在。

3.替代看属性,等效有条件

“曹冲称象”可谓是一则为世人熟知的“等效替代法”典范。在当时的条件下,曹冲为获得大象的重量,用石块去替代大象。此时的石块之所以能替代大象,是因为石块在重量上具有与大象相同的属性,除此之外,彼此无任何关联。其等效的条件就是将大象与石块载入同一条船且吃水深度相同。可见,等效替代法的要决,一是要寻找出不同事物的相同属性,二是要清楚二者等效的前提条件。例如正弦交流电的有效值概念就是运用稳恒直流电等效替代并经数学推演得出的。这是因为这两种电流或电压都具有“能量”這一共同属性,其等效条件是两种电流通过相同阻值的电阻,且通电时间相同,产生的热量相等。

教学中要让学生明白“属性”与“条件”是恰当运用“等效替代法”的关键,也就是要解决好在什么条件下在什么方面对谁等效的问题,其要求是严谨甚至是苛刻的。

4.规律回迁,解决实际问题

运用“等效替代法”的目的,是试图通过所熟悉的事物找出规律,并将这一规律回迁到原来的事物,并利用替代物所遵循的规律以解决实际问题。例如,将有源二端网络用戴维宁等效电路替代,由于戴维宁等效电路的理想电压源US等于其开路电压,戴维宁等效电路的电阻R0等于其除源后从两端看进去的电阻,将这一规律回迁到有源二端网络,便可知有源二端网络的开路电压等于US,有源二端网络除源后的无源二端网络的等效电阻即为R0。根据这一结论,在解题时,只要将待求支路视为外电路,求出有源二端网络的开路电压与等效电阻,就可以很方便地求出复杂电路中待求支路的电流或电压。另外,运用这一结论还可以考察一个实际的有源二端网络的带负载能力。只要用电压表测出该有源二端网络的开路电压,用电流表测出其短路电流,便可知其戴维宁等效电路的US和R0,则该有源二端网络接入负载电阻RL后的负载电流,负载电压,当RL变化时,其电流、电压的相应变化情况也就一目了然了。

教学中要让学生知道,将“复杂问题简单化”这是运用“等效替代法”的根本指导思想,如果做不到这一点,即使能够成功“等效替代”,也没有实用价值。

三、结束语

“等效替代法”是“电工电子技术”课程中运用较多的一种方法,在教学中应给予足够的重视。多年的教学实践表明,就事论事地教,只是授人以鱼,学生运用相关概念做做练习难免导致思维僵化或局限。倘若能引导学生去品味和领悟其中思维方法的精髓,则可拓展学生的思路与视野,起到授人以渔的效果。

参考文献:

[1]王鼎,王桂琴.电工电子技术[M].北京:机械工业出版社,2006.

[2]李中发.电工电子技术基础[M].北京:水利水电出版社,2011.

[3]安兰姝.电路模型在模拟电子技术中的应用[J].廊坊师范学院学报,2010,(3).

[4]刘良成.电路教学中实际变压器的等效电路[J].电气电子教学学报,2001,(5).

(责任编辑:王意琴)

猜你喜欢
电工电子电工电子技术教学
微课让高中数学教学更高效
“自我诊断表”在高中数学教学中的应用
对外汉语教学中“想”和“要”的比较
基于SPOC的混合学习模式在高职专业基础课中的改革与实践
高职电工电子实践教学的现状与研究
关于中职电工电子实训教学的初步探索
如何在电工电子教学中培养学生的学习兴趣
浅析《电工电子技术》教学
中职院校电工电子技术教学与学生创新能力培养
跨越式跳高的教学绝招