截尾泊松分布参数MLE的渐近有效性①

2014-06-14 03:37叶晓晨
关键词:泊松正态吉林

叶晓晨

(吉林师范大学数学学院,吉林四平 136000)

1 问题的提出

关于泊松分布参数估计已有许多的研究,在文献[1]中研究截尾泊松分布参数的MLE,并给出估计的强相合性和渐近正态性.本文在此基础上,得到MLE的又一大样本性质—渐近有效性.

2 截尾泊松分布参数的MLE

设总体X服从泊松分布P(λ),其中λ >0为参数,抽取简单随机样本 X1,X2,…Xn,设K0> 0 是事先给定的常数(阈值),在试验得到的观测值不是,x1,x2,…xn,而是 x1ΛK0,x2ΛK0,…,xmΛK0,这里aΛb=min{a,b},这种情况可以看成是截尾试验.本文主要基于截尾样本 x1ΛK0,x2ΛK0,…,xnΛK0,讨论λ的MLE的渐近有效性.

为方便,记 ηi=XiΛK0(i=1,2,…,n),则η1…ηn是一列独立同分布随机变量,且

对数似然函数为

在[1]中已经证明λ的强相合性,即λ)=1,(λ→ λ,a,s)和渐近正态性,即其中V为渐近方差.下面讨论λ的渐近有效性.

在大样本理论中,估计的有效性是一个重要概念,它刻划了估计收敛于真值的速度,其定义也有好几种,通常称达到C-R下界的渐近正态估计为渐近有效估计[2-3].

用λ0表示未知的真实参数,Θ表示参数空间,假设Θ ={λ,A≤λ≤B},其中A,B为已知正数,λ0是 Θ 的内点.此外,设 fλ(ηi,δi)=(1-

根据强大数定律有

[1]刘银萍,宋立新.II型截尾情形下泊松分布参数的估计[J].吉林大学学报理学版,2007,45(6):941-944.

[2]成平.论极大似然估计的Cramer渐近有效性[J].科学通报,1980,25:1057-1060.

[3]薛红旗,宋立新.分组数据下参数极大似然估计渐近有效性[J].系统科学与数学,2001,21(2);250-256.

猜你喜欢
泊松正态吉林
基于泊松对相关的伪随机数发生器的统计测试方法
带有双临界项的薛定谔-泊松系统非平凡解的存在性
A Spring Coat for Sarah
吉林卷
吉林卷
双幂变换下正态线性回归模型参数的假设检验
基于泛正态阻抗云的谐波发射水平估计
半参数EV模型二阶段估计的渐近正态性
泊松着色代数
1<γ<6/5时欧拉-泊松方程组平衡解的存在性