数列中的数学思想

2014-06-09 11:15:50马媛
都市家教·下半月 2014年3期
关键词:数列数学思想中学数学

马媛

【摘 要】数列是整个数学知识的重要知识组成部分,除了在高等数学中数列应用广泛,在中学数学的学习中,学生就已经接触了简单的数列,整合数列中所体现的数学思想,有助于提高学生数学学习效率,同时也有助于培养学生灵活的数学思维,因此,初中数学教师在数列教学过程中,要认真总结数列中的数学思想,为学生能够灵活运用数学思想和数学方法解决实际问题打下坚实的基础。本文主要通过列举常见的习题介绍了数列中的数学思想。

【关键词】数列;数学思想;中学数学

中考数学中经常会出现一些找规律的题目,这类考题题目新颖、变化莫测,往往属于开放性题目的范畴,因此,很多中学生在遇到这类题目的时候会变得紧张、担忧,进而影响了题目的正常思考和作答。经分析,中考数学中出现的找规律题目就是数列原型,教师要善于分析这些数列题目中所渗透的数学思想,教导学生运用数学思维解答数列题目的技巧和方法,一旦中学生能够有效把握这些思维方法,那么其中考成绩往往会取得明显的提高。

一、数列中所包含着函数的思想

(1)数列中体现着函数的思想。数列其实是函数的一种离散式表达,往往函数是具有自变量和因变量共同作用产生的图形,而数列往往体现了当把自变量取成整数的情况,因此在中学教学中要善于给学生渗透数列中所包含着的函数的思想。

例如,在求解一些数列题目的时候,我们往往要将其转化为函数形式,注意数列的通项公式其实就是函数表达式,而数列的序号表示的函数的定义域,当研究数列的单调性、奇偶性等性质的时候,往往将数列转化为函数来研究。

(2)数列中常常与极限相转化的思想。数列中的“n”往往代表着无限个自然数,这就表示数列彰显着极限的含义,因此,学生在求解数列的题目的时候,一定要注意把握数列求解可以转化成为极限来求。

(3)数列常常体现了观察与构造的数学思维。与其说是构造或者观察的数学思维,我们不妨更加简单地认为数列能够锻炼学生的观察能力和构造性思维,这是不言而喻的,因为在很多中学的找规律的题目中,总是开放性地设置很多的图形或者公式,需要学生通过自己的观察来自己总结出相应的数列通项公式,这对于提高中学生的建构水平和空间想象力是非常有帮助的。

例如,在用圆圈拼图的时候,有如下图所示的规律:

请大家计算下接下来的图形用到的圆圈是多少个?

这个例子显然就是一个数列的题目,然而我们往往在思考其构造的时候会发现,这是一个简单的自然数相加的构造模式,自然而然就会想到接下来要算的就是1+2+3+4+5=15。

(4)数列常常与不等式内容相结合。不等式在中学数学学习过程中是非常重要的知识点之一,数列的题型与不等式相结合往往能够提高题目的难度和深度,这也为学生的解题带来了困难,因此,教师在讲解这部分知识的时候要注重列举典型的例题,帮助学生体会当数列与不等式相结合的考题出现时,要掌握运用放缩法求解。

例如,已知,证明:任意的≥

这里的求解就可以根据放缩法的使用达到证明目的。

(5)数列常常体现着分类讨论的思想。分类讨论往往在数学中体现着严密、谨慎的数学素养和数学理念,因此在数列的学习过程中,教师要时刻要求学生关注数列最重要的“n”的范围,往往在求解的过程中,会将n进行分类讨论,保证题目的严密与正确。

(6)数列常常体现着猜测的思想。数学的各种思维中猜测思维占据着非常重要的地位,这是由于猜想是创新思维的源泉,也是数学知识最终的根本来源,没有猜想就没有后来我们现在学习的各种数学知识,因此,数列往往能够促进中学生提高创新思维。

例如,设各项均为正数的数列{an},其中它满足如下两点:a1=2和,如果a2=1-4,求a3,a4,并猜想a2008的值(不需证明);

解:由于a1=2,a2=2-2

由此有

故猜想{an}的通项为。

二、研究数列所体现的数学思想的重要意义

(1)通过研究数列所体现的数学思想,能为教师的教学提供明确的方向。教师在教学过程中,明确了重点培养学生的哪方面的数学思维意识的目标,能收到意想不到的教学成果。

(2)通过研究数列所体现的数学思想,大大提高了学生学习数学热情。随着教师不断训练,学生在认识数列的同时数学思维提高,与此同时,直接激发了学生学习数列的热情,让学生在上数学课时充满激情,有效地提高了课堂效率。

(3)通过研究数列所体现的数学思想,让学生对数列有了更深刻的认识,为高等数学的学习打下扎实的基础。

以上所述,都是根据笔者在多年中学数学教学第一线工作中,对中学数列的思考和总结。文章通过列举简要例子的方式概括了中学数列学习过程中,所体现的基本数学思想,包括函数思想、不等式知识、极限知识、分类讨论思想、猜测想象、建构思想等等,尽管如此,学生对于数列的认识远远不够,教师一定要继续在平时的数学课堂上,为学生补充大量的数列知识题目,提高学生解答数列题目的正确率。

參考文献:

[1]吴海涛.高考数列题对数学思想方法的考查[J].山西中学数学教育,2009,2

[2]杨丽萍.新课标下高中数学教师的准备和教学方法探究[J].数理化周刊,2010,4

猜你喜欢
数列数学思想中学数学
《上海中学数学》2022年征订启示
《上海中学数学》2022年征订启示
《上海中学数学》2022年征订启示
《上海中学数学》2022年征订启示
高中数学数列试题的解题方法和技巧分析
文理导航(2016年32期)2016-12-19 21:26:03
高中数学中数列类题型的解题技巧
青年时代(2016年28期)2016-12-08 19:13:53
浅谈数学思想在初中数学教学中的应用
数列求和与数列极限
浅谈高中数学教学中数列的教学方法
《复变函数》课程的教与学