杨希等
摘要:选取了一株具有杀藻功能的蜡状芽孢杆菌(Bacillus cereus)与铜绿微囊藻(Microcystis aeruginosa)在28 ℃条件下共同培养,同时利用气相色谱-质谱技术对甲硫醚(Dimethyl sulfide, DMS)、二甲基三硫醚(Dimethyl trisulfide, DMTS)、β-环柠檬醛(β-cyclocitral)等3种异味物质进行了测定。气质联用结果显示,在藻类延滞期阶段,藻菌共培养组中的B. cereus能够增加DMS和DMTS的浓度,藻菌共培养组中β-环柠檬醛浓度低于铜绿微囊藻单独培养组;在藻类对数期阶段,β-环柠檬醛成为主要的异味化合物。双因素方差分析表明藻菌之间的相互关系影响异味化合物的变化,DMS和DMTS同时受到微囊藻和细菌的影响,而β-环柠檬醛只和铜绿微囊藻的生物量呈正相关。
关键词:藻菌共培养;异味化合物;铜绿微囊藻(Microcystis aeruginosa);蜡状芽孢杆菌(Bacillus cereus)
中图分类号:Q93-331 文献标识码:A 文章编号:0439-8114(2014)02-0301-03
Effects of Bacillus cereus on Off-flavors in Algae/bacteria Co-culture System
YANG Xi1,2,3,XIE Ping1
(1.Donghu Experimental Station of Lake Ecosystems, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China;
2.Wuhan Fisheries Science Research Institute,Wuhan 430207,China;3.The University of Chinese Academy of Sciences,Beijing 100049,China)
Abstract: An experiment was conducted to study the effects of Bacillus cereus on off-flavors in an algae/bacteria co-culture system at 28 ℃. Gas chromatography-mass spectrometry(GC-MS) was used to analyse off-flavor compounds dimethyl sulfide (DMS), dimethyl trisulfide (DMTS) and β-cyclocitral. During the lag phase of the co-culture system with M. aeruginosa (first fifteen days), B. cereus significantly increased the production of DMS and DMTS. In the exponential phase of the co-culture system (after the fifteen days), β-cyclocitral was the highest off-flavor compound. These results indicated that B. cereus increased the productions of DMS and DMTS in co-culture system. Two-Way ANOVA was used to investigate the effects of M. aeruginosa and B. cereus on the production of off-flavors. The results showed that both M. aeruginosa and B. cereus could increase the production of DMS and DMTS. β-cyclocitral was positively correlated with the biomass of M. aeruginosa.
Key words: co-culture system; off-flavors; Microcystis aeruginosa; Bacillus cereus
近年来,蓝藻水华引起的环境污染已经成为全世界关注的水环境问题。蓝藻水华主要是由铜绿微囊藻(Microcystis aeruginosa)造成的,在中国众多的富营养化湖泊中频繁发生[1]。蓝藻水华带来的危害不仅包括藻毒素的释放和水体景观的破坏,其生长和腐败产生的水体异味更造成了严重的环境污染。2005年湖北省襄樊市熊河水库发生严重异味事件[2],2007年太湖蓝藻水华暴发导致的强烈异味事件更是引起了全世界的关注,也将水体异味产生的恶劣环境影响提到了亟待解决的议事日程上[3,4]。严重水体异味事件不仅给水产养殖业、景观和旅游业造成巨大的损失,也加重了水处理系统的负担[5],所以对异味课题的探讨对解决水环境问题意义重大。
通常情况下富营养化水体异味是由一些可挥发性有机物质(Volatile organic compounds,VOCs)引起的,包括甲硫醚(Dimethyl sulfide,DMS)[6]、二甲基二硫醚(Dimethyl disulfide,DMDS)、二甲基三硫醚(Dimethyl trisulfide,DMTS)[7]、硫醇[8]、2-异丙基-3-甲氧基吡嗪(IPMP)[9]、β-紫罗兰酮(β-ionone)[10]、二甲基异莰醇(2-methylisoborneol, MIB)[11]、土味素(Geosmin,GEO)[12]和β-环柠檬醛(β-cyclocitral)[13]等。在整个富营养化水体中,水华蓝藻产生的萜类化合物、硫醇和色素衍生物是大多数挥发性有机化合物的前体[14],此外一些光合非硫细菌也可以产生甲基化硫化物如甲硫醚和二甲基二硫醚等[15],这些物质通常都是异味化合物的来源。蓝藻和微生物之间的关系影响着整个水生生态系统的能量和营养的流动循环[16],所以异味物质与蓝藻以及异养细菌的生理生化变化有着密不可分的关系。目前一些已有的研究通常从水体异味物质的来源、光照和温度对其产生的影响和动力学方面加以探讨[17],鲜有报道涉及水华蓝藻与异养微生物相互关系对异味物质的影响。本研究利用微囊藻与细菌的共培养系统模拟富营养化水体,以期通过阐述藻菌相互关系对异味的影响为异味物质的控制与去除提供新的理论依据。
1 材料与方法
1.1 材料
在整个试验过程中, B. cereus生物量都呈下降趋势,而且在第15天下降趋势最为明显。皮尔森相关分析(Pearson correlation analysis)证明微囊藻和细菌的生长关系为相互拮抗(Pearson Correlation=-0.221,P=0.01)。也就是说,高浓度的微囊藻抑制了细菌的生长,而反过来高浓度的细菌则抑制了微囊藻的生长。据此推测,在本试验中,混合培养的藻类延滞期延长是由于B. cereus所具有的杀藻作用造成的,而当微囊藻达到对数生长期时,细菌的生长被抑制可能是由于微囊藻的分泌物(如藻毒素)造成的,但这个推测还需要进一步的试验证明。
2.2 异味化合物的动态变化
在藻类延滞期阶段,M. aeruginosa和B. cereus对照组的DMS和DMTS均小于处理组(P<0.05)(图2)。在水体异味物质中,属于挥发性硫化物(Volatile organic sulfur compounds,VOSCs)类的DMS、DMDS和DMTS基本上均来自于藻类降解,有报道证明在这个过程异养细菌起着很重要的作用[7]。Bacillus被认为是一种具有杀藻作用的细菌属[16],在本试验中,M. aeruginosa和B. cereus均能分泌DMS和DMTS,而对照组浓度低于处理组的结果说明,处理组中的B. cereus加快了M. aeruginosa的分解,提高了DMS和DMTS的产生。这一结果与之前所报道的一些研究结论相似[7]。在藻类对数生长期,处理组中的B. cereus生物量降低,M. aeruginosa加速生长,DMS和DMTS浓度也相应减小,这些现象证明M. aeruginosa的死亡和分解往往伴随着高浓度挥发性硫化物的产生。
在本试验中藻类处在延滞期时,M. aeruginosa对照组的β-环柠檬醛浓度均高于处理组以及B. cereus对照组;15 d后,处理组和M. aeruginosa对照组的M. aeruginosa均进入对数生长期,而β-环柠檬醛浓度组间无差别。这一现象有理论依据,即β-环柠檬醛一般被认为是由微囊藻种属产生的挥发性化合物[7],而且它的产生只和微囊藻有紧密联系[21]。结合本试验结果可知,β-环柠檬醛的产生与M. aeruginosa生长密切相关,B. cereus并非β-环柠檬醛的主要来源。
2.3 铜绿微囊藻、蜡状芽孢杆菌和异味化合物之间的相互关系
双因素方差分析的结果(表1)显示,M. aeruginosa、B. cereus以及它们之间的交互作用均对DMS和DMTS浓度有显著影响,M. aeruginosa与β-环柠檬醛之间为正相关。MIB和GEO在本试验中不受到任何因素的影响。
3 小结
本研究证明,藻类延滞期阶段B. cereus增加了DMS和DMTS的合成,且DMS和DMTS受到M. aeruginosa和B. cereus交互作用的影响;β-环柠檬醛只和M. aeruginosa有相关性。这些结果表明异味物质的来源和影响因素较为复杂,具体情况有待进一步研究。
参考文献:
[1] 宋立荣,李 林 陈 伟,等.水体异味及其藻源次生代谢产物研究进展[J].水生生物学报,2004,28(4):435-439.
[2] ZHANG T, LI L, ZUO Y X, et al. Biological origins and annual variations of earthy-musty off-flavours in the Xionghe Reservoir in China[J]. Journal of Water Supply Research and Technology-Aqua,2010,59(4):243-254.
[3] YANG M, YU J, LI Z, et al. Taihu Lake not to blame for Wuxis woes[J]. Science, 2008,319(5860):158.
[4] CHEN J, XIE P, MA Z M, et al. A systematic study on spatial and seasonal patterns of eight taste and odor compounds with relation to various biotic and abiotic parameters in Gonghu Bay of Lake Taihu,China[J]. Sci Total Environ, 2010, 409(2):314-325.
[5] LI L, WAN N, GAN N, et al. Annual dynamics and origins of the odorous compounds in the pilot experimental area of Lake Dianchi, China[J]. Water Sci Technol,2007,55(5):43-50.
[6] GIGER W, SCHAFFNER C. Groundwater pollution by volatile organic chemicals[J]. Studies in Environmental Science,1981, 17:517-522.
[7] ZHANG X J, CHEN C, DING J Q, et al., The 2007 water crisis in Wuxi, China: Analysis of the origin[J]. Journal of Hazardous Materials,2010,182(1-3):130-135.
[8] SLATER G P, BLOK V C. Volatile compounds of the Cyanophyceae. A review[J]. Water Science & Technology,1983, 15(6):181-190.
[9] BUYYER R, LING L. Earthy aroma of potatoes[J]. Journal of Agricultural and Food Chemistry,1973,21(4):745-746.
[10] HOCKELMANN C, JUTTNER F. Off-flavours in water: Hydroxyketones and beta-ionone derivatives as new odour compounds of freshwater cyanobacteria[J]. Flavour and Fragrance Journal,2005,20(4):387-394.
[11] ROSEN A A, SAFFERMAN R S,MASHNI C I, et al. Identity of odorous substance produced by Streptomyces griseoluteus[J]. Applied and Environmental Microbiology,1968,16(1):178-179.
[12] GUTTMAN L, RIJN J V. 2-Methylisoborneol and geosmin uptake by organic sludge derived from a recirculating aquaculture system[J]. Water Research,2009,43(2):474-480.
[13] OZAKI K, AKEMI O, CHIEKO I, et al. Lysis of cyanobacteria with volatile organic compounds[J]. Chemosphere,2008, 71(8):1531-1538.
[14] WASTON S B, JEFF R, BOYER G L. Boyer, taste and odour and cyanobacterial toxins: impairment, prediction, and management in the Great Lakes[J]. Canadian Journal of Fisheries and Aquatic Sciences,2008,65(8):1779-1796.
[15] MCCARTHY S, TOM C, MICHELE M, et al. Phototrophic bacteria produce volatile, methylated sulfur and selenium compounds[J]. Fems Microbiology Letters,1993,112(1):93-97.
[16] FRAZIER A D, ROWEL J M, RENTZ C A,et al. Bacterial lysis of aureococcus anophageggerens CCMP 1784 (pelagophyceae)[J]. Journal of Phycology,2007,43(3):461-465.
[17] ZHANG T, LI L, SONG L R, et al. Effects of temperature and light on the growth and geosmin production of Lyngbya kuetzingii(Cyanophyta)[J]. Journal of Applied Phycology, 2009,21(3):279-285.
[18] NAKAMURA N, NAKANO K, SUGIURA N et al. A novel cyanobacteriolytic bacterium, Bacillus cereus, isolated from a Eutrophic Lake[J]. Journal of Bioscience and Bioengineering, 2003,95(2):179-184.
[19] STANIER R Y, KUNISAWA R, MANDELl M, et al., Purification and properties of unicellular blue-green algae (order Chroococcales)[J]. Microbiology and Molecular Biology Reviews,1971,35(2):171-205.
[20] PORTER K, FEIG Y S. The use of DAPI for identifying and counting aquatic microflora[J]. Limnology and Oceanography,1980,25(5):943-948.
[21] HARADA K, OZAKI K, TSUZULI S, et al. Blue color formation of cyanobacteria with β-Cyclocitral[J]. Journal of Chemical Ecology,2009,35(11):1295-1301.
[8] SLATER G P, BLOK V C. Volatile compounds of the Cyanophyceae. A review[J]. Water Science & Technology,1983, 15(6):181-190.
[9] BUYYER R, LING L. Earthy aroma of potatoes[J]. Journal of Agricultural and Food Chemistry,1973,21(4):745-746.
[10] HOCKELMANN C, JUTTNER F. Off-flavours in water: Hydroxyketones and beta-ionone derivatives as new odour compounds of freshwater cyanobacteria[J]. Flavour and Fragrance Journal,2005,20(4):387-394.
[11] ROSEN A A, SAFFERMAN R S,MASHNI C I, et al. Identity of odorous substance produced by Streptomyces griseoluteus[J]. Applied and Environmental Microbiology,1968,16(1):178-179.
[12] GUTTMAN L, RIJN J V. 2-Methylisoborneol and geosmin uptake by organic sludge derived from a recirculating aquaculture system[J]. Water Research,2009,43(2):474-480.
[13] OZAKI K, AKEMI O, CHIEKO I, et al. Lysis of cyanobacteria with volatile organic compounds[J]. Chemosphere,2008, 71(8):1531-1538.
[14] WASTON S B, JEFF R, BOYER G L. Boyer, taste and odour and cyanobacterial toxins: impairment, prediction, and management in the Great Lakes[J]. Canadian Journal of Fisheries and Aquatic Sciences,2008,65(8):1779-1796.
[15] MCCARTHY S, TOM C, MICHELE M, et al. Phototrophic bacteria produce volatile, methylated sulfur and selenium compounds[J]. Fems Microbiology Letters,1993,112(1):93-97.
[16] FRAZIER A D, ROWEL J M, RENTZ C A,et al. Bacterial lysis of aureococcus anophageggerens CCMP 1784 (pelagophyceae)[J]. Journal of Phycology,2007,43(3):461-465.
[17] ZHANG T, LI L, SONG L R, et al. Effects of temperature and light on the growth and geosmin production of Lyngbya kuetzingii(Cyanophyta)[J]. Journal of Applied Phycology, 2009,21(3):279-285.
[18] NAKAMURA N, NAKANO K, SUGIURA N et al. A novel cyanobacteriolytic bacterium, Bacillus cereus, isolated from a Eutrophic Lake[J]. Journal of Bioscience and Bioengineering, 2003,95(2):179-184.
[19] STANIER R Y, KUNISAWA R, MANDELl M, et al., Purification and properties of unicellular blue-green algae (order Chroococcales)[J]. Microbiology and Molecular Biology Reviews,1971,35(2):171-205.
[20] PORTER K, FEIG Y S. The use of DAPI for identifying and counting aquatic microflora[J]. Limnology and Oceanography,1980,25(5):943-948.
[21] HARADA K, OZAKI K, TSUZULI S, et al. Blue color formation of cyanobacteria with β-Cyclocitral[J]. Journal of Chemical Ecology,2009,35(11):1295-1301.
[8] SLATER G P, BLOK V C. Volatile compounds of the Cyanophyceae. A review[J]. Water Science & Technology,1983, 15(6):181-190.
[9] BUYYER R, LING L. Earthy aroma of potatoes[J]. Journal of Agricultural and Food Chemistry,1973,21(4):745-746.
[10] HOCKELMANN C, JUTTNER F. Off-flavours in water: Hydroxyketones and beta-ionone derivatives as new odour compounds of freshwater cyanobacteria[J]. Flavour and Fragrance Journal,2005,20(4):387-394.
[11] ROSEN A A, SAFFERMAN R S,MASHNI C I, et al. Identity of odorous substance produced by Streptomyces griseoluteus[J]. Applied and Environmental Microbiology,1968,16(1):178-179.
[12] GUTTMAN L, RIJN J V. 2-Methylisoborneol and geosmin uptake by organic sludge derived from a recirculating aquaculture system[J]. Water Research,2009,43(2):474-480.
[13] OZAKI K, AKEMI O, CHIEKO I, et al. Lysis of cyanobacteria with volatile organic compounds[J]. Chemosphere,2008, 71(8):1531-1538.
[14] WASTON S B, JEFF R, BOYER G L. Boyer, taste and odour and cyanobacterial toxins: impairment, prediction, and management in the Great Lakes[J]. Canadian Journal of Fisheries and Aquatic Sciences,2008,65(8):1779-1796.
[15] MCCARTHY S, TOM C, MICHELE M, et al. Phototrophic bacteria produce volatile, methylated sulfur and selenium compounds[J]. Fems Microbiology Letters,1993,112(1):93-97.
[16] FRAZIER A D, ROWEL J M, RENTZ C A,et al. Bacterial lysis of aureococcus anophageggerens CCMP 1784 (pelagophyceae)[J]. Journal of Phycology,2007,43(3):461-465.
[17] ZHANG T, LI L, SONG L R, et al. Effects of temperature and light on the growth and geosmin production of Lyngbya kuetzingii(Cyanophyta)[J]. Journal of Applied Phycology, 2009,21(3):279-285.
[18] NAKAMURA N, NAKANO K, SUGIURA N et al. A novel cyanobacteriolytic bacterium, Bacillus cereus, isolated from a Eutrophic Lake[J]. Journal of Bioscience and Bioengineering, 2003,95(2):179-184.
[19] STANIER R Y, KUNISAWA R, MANDELl M, et al., Purification and properties of unicellular blue-green algae (order Chroococcales)[J]. Microbiology and Molecular Biology Reviews,1971,35(2):171-205.
[20] PORTER K, FEIG Y S. The use of DAPI for identifying and counting aquatic microflora[J]. Limnology and Oceanography,1980,25(5):943-948.
[21] HARADA K, OZAKI K, TSUZULI S, et al. Blue color formation of cyanobacteria with β-Cyclocitral[J]. Journal of Chemical Ecology,2009,35(11):1295-1301.