甘蔗抗旱基因研究进展

2014-05-04 10:23林展图等
湖北农业科学 2014年2期
关键词:干旱甘蔗

林展图等

摘要:干旱是影响甘蔗(Saccharum officinarum L.)正常生长发育和糖分运输累积的最重要逆境因子。如何解决干旱条件下甘蔗的产量问题是目前生产上面临的重要课题。近年来,随着基因工程技术的发展,甘蔗中许多抗旱相关基因已被克隆,这些基因是甘蔗抗旱性改良中的重要基因资源。综述了近几年甘蔗抗旱相关基因的研究进展及其在基因工程上的应用现状。

关键词:甘蔗(Saccharum officinarum L.);干旱;调节基因;功能基因

中图分类号:S566.1;Q948.112+3 文献标识码:A 文章编号:0439-8114(2014)02-0249-06

Researches of Drought-resistance Related Genes in Sugarcane

LIN Zhan-tu1,LI Tao2,WANG Cai-yun1,ZHANG Xiao-dong2,LI Fu-sheng1

(1.Yunnan Agricultural University,Kunming 650201,China; 2.Yuxi Normal University,Yuxi 653100,Yuunan,China)

Abstract: Drought is the most important stress factor significantling destroying the normal growth and sucrose accumulation of sugarcane. Solving the sugarcane production under drought condition is an emergent issue in practice. In recent years, many drought-resistance related genes of sugarcane have been cloned which are important resources for breeding sugarcane with drought-resistance. This paper is aimsed to provide a review of these functional genes for drought tolerance and the activity of their application in drought tolerance.

Key words: Saccharum officinarum L.; drought; regulatory genes; functional genes

甘蔗(Saccharum officinarum L.)为禾本科甘蔗属植物,是世界糖料生产的重要作物之一[1]。2009年全球甘蔗种植面积已达2 300万hm2,约占全球耕地面积的5%[2]。巴西是世界上最大的蔗糖生产国,每年可生产蔗糖3 100万t,约占全球产量的2/3[3]。甘蔗也是生物乙醇生产的重要原材料。有学者估计甘蔗生物乙醇在未来15~20年间可以取代10%以上的世界精炼石油[4,5]。在生产上,甘蔗容易受到恶劣气候和土壤条件等环境因子的影响。

非生物胁迫是造成全球重要作物减产的主要因素之一,其中干旱胁迫居首位,对作物适应性和产量造成很大影响,如干旱影响甘蔗生长发育和糖分的运输累积,导致甘蔗产量减少40%以上[6]。因而,发掘甘蔗抗旱相关基因已成为甘蔗育种、遗传资源与品种改良研究的热点。通过基因工程手段,将抗旱相关基因克隆并将其导入非抗旱甘蔗品种,定向改良该品种的抗旱性,将是未来甘蔗品种改良的一种有效手段。近年来,国内外研究者利用现代分子生物学技术,已克隆出一些与抗旱相关的基因。根据作用方式的不同,可以将抗旱基因分为两类,一类是功能基因,其编码产物在植物抗旱中直接起保护作用,如渗透调节物质生物合成途径的关键酶基因(如脯氨酸合成酶基因P5CS)和具有抗氧化功能的酶基因(如超氧化物歧化酶基因SOD);另一类是调节基因,其编码产物在信号转导和基因表达过程中能够调节功能基因的表达,如bZIP(碱性亮氨酸拉链)转录因子和蛋白激酶基因MAPK等[7]。

1 甘蔗抗旱相关的功能基因

1.1 渗透调节物质生物合成途径相关基因

脯氨酸是植物体内重要的相容性渗透调节物质,一般以游离状态存在于植物细胞中。研究表明增加植物细胞中脯氨酸的含量,可以有效提高植物抗旱性和耐盐性[8]。因此,脯氨酸的积累与植物干旱、盐胁迫密切相关。高等植物脯氨酸生物合成分为两条途径:谷氨酸途径和鸟氨酸途径。通常在植物受到逆境胁迫时,脯氨酸的合成主要来源于后者。△1-吡咯啉-5-羧酸合成酶(P5CS)基因是脯氨酸合成中谷氨酸途径的限速酶基因,干旱和盐胁迫处理下P5CS基因的诱导表达,往往伴随着脯氨酸含量的增加[9]。△-鸟氨酸氨基转移酶(δ-OAT)基因是脯氨酸合成中鸟氨酸途径的一个关键酶基因。

近年来研究表明这两种酶已经从许多植物中分离和克隆出来。Kishor等[10]将乌头叶豇豆(Vigna aconitifolia)中的P5CS基因导入烟草中发现,转基因烟草的脯氨酸含量比对照组高10~18倍,其抗渗透能力也大大提高。Huang等[11]运用同源克隆技术获得甘蔗栽培种“ROC22”的P5CS基因(Sc-P5CS)编码序列,其推断的氨基酸序列与前人克隆的Sc-P5CS基因相似性为92%,该基因可能是甘蔗P5CS基因家族的一个新成员。Patade等[12]克隆了甘蔗栽培种“Co86032”的P5CS基因,在盐胁迫和聚乙二醇(PEG)胁迫下进行分析,结果发现盐胁迫2 h后该基因表达量比对照组减少30%,盐胁迫2 h以上,其表达量均比对照组高;PEG胁迫4 h后其表达量是对照组的1.3倍,PEG胁迫16 h和24 h后其表达量均比对照组低,这些结果表明甘蔗P5CS基因在盐胁迫或PEG胁迫下的作用不同。

You等[8]报道在水稻(Oryza sativa)中过表达水稻OsOAT基因可明显增强其δ-OAT活性、提高脯氨酸含量和增强水稻的抗旱和抗渗透能力。张积森等[13]通过消减文库技术首次从甘蔗栽培种“富农95-1702”中克隆到OAT基因(δ-OAT),表达模式研究结果表明δ-OAT在根、茎、叶中表达并没有明显的组织特异性。张积森等[14]从斑茅(Erianthus arundinaceus)中克隆到EaOAT基因,表达模式分析结果表明其在干旱胁迫下被诱导,胁迫初期其表达被抑制,胁迫后期其表达被上调。因此,可以推测δ-OAT基因在甘蔗响应干旱胁迫中起着重要作用,其具体作用机制还需要进一步研究。

1.2 抗氧化防御体系相关酶基因

3 展望

甘蔗是重要的经济作物。目前,虽然利用同源克隆和电子克隆技术已克隆和鉴定了一些甘蔗抗旱相关基因,并通过基因工程方法,获得一些转基因甘蔗株系,提高了其抗旱耐盐性,在甘蔗抗旱育种中具有重要意义。但是,甘蔗抗旱相关基因的克隆和转基因研究方面仍存在以下几个方面的问题:①甘蔗是复杂的无性繁殖多倍体植物,利用分子标记技术定位抗旱相关基因有一定的难度,需要改变分子标记技术策略来定位和克隆甘蔗抗旱相关基因。由于近几年来测序技术的快速发展,今后通过转录组测序技术来进一步挖掘和克隆甘蔗抗旱功能基因和调控基因将是非常经济和高效的手段;②过去的研究一直以某一个或几个基因为基础,在获得某一个抗旱功能基因后,没有对这些基因进行详细功能和调控机制研究,今后要对这些基因分别进行过表达、RNAi、互补试验和酶活性测定等方面的研究,对于转录因子还需要通过染色质免疫共沉淀(ChIP)和凝胶阻滞(EMSA)等试验确定它们的功能。③转基因过程中使用的启动子主要是组成型启动子,转化效率及表达效率不高,影响甘蔗的抗旱能力。在今后的研究中,可以分离和鉴定高效表达的启动子和甘蔗诱导型的启动子,有助于提高甘蔗转基因的表达效率。④在转基因过程中,相比导入或改良个别功能基因来提高某种抗性的方法,导入或改良转录因子是提高甘蔗抗逆性更为有效的方法和途径,因此有必要进一步挖掘与抗旱相关的转录因子基因。⑤目前甘蔗的转基因技术主要依赖于农杆菌介导的方法,其转化效率不高,今后还需要进一步开发甘蔗的高效转化程序。目前,甘蔗的基因组还未测序,但是已经开发出甘蔗的基因芯片,这为基因的表达检测提供了高效手段。随着分子生物学技术的不断发展,越来越多抗旱相关基因被克隆和功能解析,这将为甘蔗抗旱新品种的选育和改良奠定基础。

参考文献:

[1] GENTILE A,FERREIRA T H,MATTOSR S,et al. Effects of drought on the microtranscriptome of field-grown sugarcane plants[J]. Planta,2013,237(3):783-798.

[2] LEMBKE C G, NISHIYAMA M Y JR, SATO P M, et al. Identification of sense and antisense transcripts regulated by drought in sugarcane[J]. Plant Molecular Biology,2012,79(4-5):461-467.

[3] MENOSSI M,SILVA-FILHO M C,VINCENTZ M,et al. Sugarcane functional genomics: Gene discovery for agronomic trait development[J]. International Journal of Plant Genomics, 2008, DOI: 10.1155/2008/458732.

[4] SILVA R,NETO J F,PANDOLEI V,et al. Transcriptomics of sugarcane osmoprotectants under drought[M]. Rijeka, Croatia: INTECH Open Access Publisher,2011.

[5] GOLDEMBERG J. Ethanol for a sustainable energy future[J]. Science,2007,315(5813):808-810.

[6] JANGPROMMA N,THAMASIRIRAK S,JAISIL P,et al. Effects of drought and recovery from drought stress on above ground and root growth, and water use efficiency in sugarcane(Saccharum officinarum L.)[J]. Australian Journal of Crop Science,2012,6(8):1298-1304.

[7] HOLMBERG N,B?譈LOW L. Improving stress tolerance in plants by gene transfer[J]. Trends in Plant Science,1998,3(2):61-66.

[8] YOU J,HU H H,XIONG L Z. An ornithine delta-aminotransferase gene OsOAT confers drought and oxidative stress tolerance in rice[J]. Plant Science,2012,197:59-69.

[9] KU H M, TAN C W, SU Y S, et al. The effect of water deficit and excess copper on proline metabolism in Nicotiana benthamiana[J]. Biologia Plantarum,2012,56(2):337-343.

[10] KISHOR P B K,HONG Z L,MIAO G H,et al. Overexpression of △1-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants[J]. Plant Physiology,1995,108(4):1387-1394.

[11] HUANG C M,YANG L T,LI Y R,et al. Isolation and characterization of a gene encoding the △-1-pyrroline-5-carboxylate synthetase in sugar(Saccharum officinarum L.)[J]. Guangxi Agricultural Sciences,2009,40(2):113-119.

[12] PATADE V Y,BHARGAVA S,SUPRASANNA P. Transcript expression profiling of stress responsive genes in response to short-term salt or PEG stress in sugarcane leaves[J]. Molecular Biology Reports,2012,39(3):3311-3318.

[13] 张积森,陈由强,郭春芳,等. 甘蔗水分胁迫响应的δ-鸟氨酸转氨酶基因克隆及分子特征分析[J]. 热带作物学报,2009,30(8):1062-1068.

[14] 张积森,阙友雄,李 伟,等. 水分胁迫下斑茅3个逆境代谢相关基因表达的实时PCR分析[J]. 中国农学通报,2007,23(5):49-54.

[15] DE CARVALHO K,DE CAMPOS M K F,DOMINGUES D S,et al. The accumulation of endogenous proline induces changes in gene expression of several antioxidant enzymes in leaves of transgenic Swingle citrumelo[J]. Molecular Biology Reports,2013,40(4):3269-3279.

[16] QUE Y X,LIU J X, XU L P,et al. Molecular cloning and expression analysis of a Mn-superoxide dismutase gene in sugarcane[J]. African Journal of Biotechnology,2012,11(3):552-560.

[17] LI C H,SUN H L,CHEN A Q,et al. Identification and characterization of an intracellular Cu, Zn-superoxide dismutase (icCu/ZnSOD) gene from clam Venerupis philippinarum[J]. Fish & Shellfish Immunology,2010,28(3):499-503.

[18] ZHANG Y C,MAO L Y,WANG H,et al. Genome-wide identification and analysis of grape aldehyde dehydrogenase(ALDH) gene superfamily[J]. PLoS One,2012,DOI: 10.1371/journal.pone.0032153.

[19] KIRCH H H, BARTELS D,WEI Y,et al. The ALDH gene superfamily of Arabidopsis[J]. Trends in Plant Science,2004, 9(8):371-377.

[20] KOTCHONI S O, JIMENEZ-LOPEZ J C, KAYOD?魪 A P,et al. The soybean aldehyde dehydrogenase(ALDH) protein superfamily[J]. Gene,2012,495(2):128-133.

[21] XIONG L M,SCHUMAKER K S,ZHU J K,et al. Cell signaling during cold, drought and salt stress[J]. The Plant Cell,2002,14:165-183.

[22] MITTLER R. Oxidative stress, antioxidants and stress tolerance[J]. Trends in Plant Science,2002,7(9):405-410.

[23] ISHITANI M, NAKAMURA T, HAN S Y, et al. Expression of the betaine aldehyde dehydrogenase gene in barley in response to osmotic-stress and abscisic-acid[J]. Plant Molecular Biology,1995,27(2):307-315.

[24] BROCKER C,LASSEN N,ESTEY T,et al. Aldehyde dehydrogenase 7A1(ALDH7A1) is a novel enzyme involved in cellular defense against hyperomsotic stress[J]. The Journal of Biological Chemistry,2010,285(24):18452-18463.

[25] KELLY G J,GIBBS M. A mechanism for the indirect transfer of photosynthetically reduced nicotinamide adenine dinucleotide phosphate from chloroplasts to the cytoplasm[J]. Plant Physiology,1973,52(6):674-676.

[26] JACKSON B,BROCKER C,THOMPSON D C,et al. Update on the aldehyde dehydrogenase gene(ALDH) superfamily[J]. Human Genomics,2011,5(4):283-303.

[27] BROCKER C,VASILIOU M,CARPENTER S,et al. Aldehyde dehydrogenase(ALDH) superfamily in plants: gene nomenclature and comparative genomics[J]. Planta,2012,237(1):189-210.

[28] 张积森,郭春芳,王冰梅,等. 甘蔗水分胁迫响应相关醛脱氢酶基因的克隆及其表达特征分析[J].中国农业科学,2009,42(8):2676-2685.

[29] 裴丽丽,郭玉华,徐兆师,等.植物逆境胁迫相关蛋白激酶的研究进展[J]. 西北植物学报,2012,32(5):1052-1061.

[30] 李 璨,腾 峥,刘开雨,等.甘蔗MAP激酶基因SoMAPK4克隆与生物信息学分析[J].南方农业学报,2012,43(6):727-732.

[31] LINDEMOSE S, O'SHEA C, JENSEN K M, et al. Structure, function and networks of transcription factors involved in abiotic stress responses[J]. International Journal of Molecular Sciences,2013,14(3):5842-5878.

[32] 刘 莉. DREBs、bZIP转录因子与植物抗旱性研究进展[J]. 浙江农业科学,2013(1):98-102.

[33] LI Y,SUN Y,YANG Q C,et al. Isolation and characterization of a gene from Medicago sativa L., encoding a bZIP transcription factor[J]. Molecular Biology Reports,2013,40(2):1227-1239.

[34] HUANG X S,LIU J H,CHEN X J. Overexpression of PtrABF gene, a bZIP transcription factor isolated from Poncirus trifoliata, enhances dehydration and drought tolerance in tobacco via scavenging ROS and modulating expression of stress-responsive genes[J]. BMC Plant Biology,2010,10(1):1-18.

[35] WU Y,ZHOU H,QUE Y X,et al. Cloning and identification of promoter Prd29A and its application in sugarcane drought resistance[J]. Sugar Tech,2008,10(1):36-41.

[36] SCHL?魻GL P S, KOBARG J,MOREAU V H,et al. Expression, purification and characterization of a novel bZIP protein from sugarcane[J]. Plant Science,2004,167(3):583-595.

[37] DU H,ZHANG L,LIU L,et al. Biochemical and molecular characterization of plant MYB transcription factor family[J]. Biochemistry (Moscow),2009,74(1):1-11.

[38] PRABU G,PRASAD D T. Functional characterization of sugarcane MYB transcription factor gene promoter(PCcMYBAS1) in response to abiotic stresses and hormones[J]. Plant Cell Reports,2012,31(4):661-669.

猜你喜欢
干旱甘蔗
花式卖甘蔗
清明甘蔗“毒过蛇”
甘蔗的问题
爱咬甘蔗的百岁爷爷
基于距平的白城地区干旱时间分布特征分析
临夏地区干旱特征及干湿气候区划
23个甘蔗品种对甘蔗黑穗病的抗性测定
黑熊吃甘蔗
夏季高温干旱时节高山蔬菜种植管理策略
基于多源卫星遥感的长江流域旱情监测研究