激活态雪旺细胞对神经干细胞分化作用的研究

2014-04-10 16:33张睿张军赵承斌
中国医药导报 2014年7期
关键词:联合培养神经元

张睿+张军+赵承斌

哈尔滨医科大学附属第四医院骨科,黑龙江哈尔滨 150086

[摘要] 目的 探讨激活态雪旺细胞(SCs)对神经干细胞(NSCs)的分化作用。 方法 取出生24 h内的SD乳鼠脊髓NSCs,分离培养并传至4代。取体重(100±5)g的SD大鼠,结扎右侧坐骨神经,1周后取双侧坐骨神经,左侧提取正常坐骨神经分离培养SCs(普通SCs),右侧提取结扎变性的坐骨神经分离培养SCs(激活态SCs),均采用双酶消化加差速贴壁法。将SCs与NSCs应用Transwell培养皿联合培养,分为三组:A组为激活态SCs与NSCs;B组为普通SCs与NSCs;C组仅为NSCs。于培养的第2、4、6天检测各组NSCs活性。1周后,Western blot检测各组SCs表皮生长因子(EGF)和碱性成纤维细胞生长因子(bFGF)的表达水平,免疫荧光检测各组NSCs分化比例。 结果 传至4代的NSCs生长稳定,分离的SCs 7 d后大量增殖呈旋涡状。联合培养后MTT法检测细胞活性,第2、4天三组细胞的活性差异无统计学意义(P > 0.05),第6天C组活细胞比例开始降低,A、B组与C组比较差异有统计学意义(P < 0.05),A组与B组比较差异无统计学意义(P > 0.05)。Western blot检测A组细胞表皮生长因子(EGF)表达水平(0.486±0.028)、碱性成纤维细胞生长因子(bFGF)表达水平(0.385±0.023)均高于B组,差异有统计学意义(P < 0.05)。MAP-2荧光染色,每高倍视野阳性细胞比例A组[(35.26±2.53)%]高于B组[(27.63±3.45)%],差异有统计学意义(P < 0.05);GFAP荧光染色,每高倍视野阳性细胞比例A组[(62.42±3.78)%]低于B组[(70.18±1.26)%],差异有统计学意义(P < 0.05)。 结论 激活态SCs能够促进NSCs向神经元的分化进程,提高神经元的分化比例。

[关键词] 雪旺细胞;神经干细胞;细胞分化;联合培养;神经元

[中图分类号] R741.02 [文献标识码] A [文章编号] 1673-7210(2014)03(a)-0019-04

Effect of activated Schwann cells in inducing differentiation of neural stem cells

ZHANG Rui ZHANG Jun ZHAO Chengbin

Department of Orthopedic, the Fourth Affiliated Hospital of Harbin Medical University, Heilongjiang Province, Harbin 150086, China

[Abstract] Objective To discuss the effect of activated Schwann cells (SCs) in the differentiation of neural stem cells (NSCs). Methods The spinal cord of SD rat was taken in the 24 hours after birth. The NSCs from spinal cord were separated and cultured until the fourth passage. (100±5) g SD rat was used to ligature the right sciatic nerve. After one week, both the right and left sciatic nerve were isolated to culture SCs by double enzymes digestion and differential attachment. The SCs from the right sciatic nerve were named activated SCs, and the ones from the left side called common SCs. Then the SCs and NSCs were co-culture by Transwell culture dish, and they were divided into group A, group B and group C. group A was activated SCs and NSCs, group B was common SCs and NSCs, and group C was just NSCs as control. The cytoactive was detected at the second, fourth and sixth days. One week later, the EGF and bFGF secreted by SCs were detected in Western blot, and the differentiation ratio of NSCs was detected by immunofluorescence. Results The fourth passage NSCs grew stably, and the SCs proliferated as vortex after 7 days. The difference of cytoactive between the second and fourth day was not statistically significant (P > 0.05) according to the MTT detection. However, the cytoactive began to reduce at the sixth day by MTT detection, and the cytoactive of group A and group B were superior than those of group C, the differences were statistically significant (P < 0.05). The difference of cytoactive between group A and group B, the difference was not statistically significant (P > 0.05). The expression of EGF and bFGF in group A [(0.486±0.028), (0.385±0.023)] were both higher than those in group B, the differences were statistically significant (P < 0.05). The positive cells ratio of each high power field of group A [(35.26±2.53)%] was superior than that of group B [(27.63±3.45)%] according to the MAP-2 staining, the difference was statistically significant (P < 0.05). The positive cells ratio of each high power field of group A [(62.42±3.78)%] was lower than that of group B [(70.18±1.26)%] according to the GFAP staining, the difference was statistically significant (P < 0.05). Conclusion The activated SCs can promote the NSCs differentiate into neurons, and improve the ratio of neurons.

[Key words] Schwann cell; Neural stem cell; Cell differentiation; Co-culture; Neuron

[基金项目] 黑龙江省自然科学基金项目(编号D200901);黑龙江省教育厅科技研究项目(编号11531160)。

[作者简介] 张睿(1987.2-),男,哈尔滨医科大学2011级在读硕士研究生;研究方向:神经干细胞应用。

[通讯作者] 赵承斌(1958.5-),男,主任医师,教授,硕士研究生导师;研究方向:脊柱外科。

周围神经损伤是骨科常见的疾病之一,虽然周围神经具有一定的再生能力,但对于较大缺损却很难自身修复[1]。随着组织工程学领域研究的深入,神经干细胞(NSCs)已被公认为是对神经损伤修复的有效方法,通过NSCs在神经断端的不断分化,使受损的周围神经重新恢复连接。然而单纯形态学得连接不能保证神经的传导功能,有研究表明,这与NSCs分化过程中分化为胶质细胞和神经元的比例有关[2],提高神经元的分化比例,降低胶质细胞的表达可有效提高神经的传导速度,因此许多学者通过不同方法促进神经干细胞向神经元的分化[3-5],均取得了一定进展。本研究通过激活态雪旺细胞(SCs)刺激NSCs的分化,观察其诱导NSCs分化为神经元的能力。

1 材料与方法

1.1 实验材料

雌性SD大鼠[中国农科院哈尔滨兽医研究所提供,许可证号:SYXK(黑)2006-032];DMEM/F12细胞培养基(Hyclone公司,美国);青-链双抗,胰蛋白酶,Ⅱ型胶原酶(碧云天,中国);兔抗鼠单克隆抗体Nestin,FITC标记的羊抗兔IgG,兔抗鼠碱性成纤维细胞生长因子(bFGF)、表皮细胞生长因子(EGF)单克隆抗体,兔抗鼠MAP-2、GFAP单克隆抗体(武汉博士德公司);Transwell培养皿(Corning公司,美国)。

1.2 实验方法

1.2.1 神经干细胞的分离培养与鉴定 取出生24 h内的SD大鼠,断髓处死后无菌条件下取出脊髓,显微镜下剥离硬脊膜,剪成5 mm3组织块,加入0.25%胰酶消化10 min,用吸管反复吹打至单细胞悬液,加入5 mL DMEM/F12培养基终止消化。1000 r/min离心5 min,弃上清,加入含20 ng/mL的EGF和20 ng/mL的DMEM/F12培养液,重悬后移入细胞培养瓶,置于37℃含5%CO2的细胞培养箱中培养。每6~8天传代1次,连续传4代。取第4代神经球,移入含有多聚赖氨酸包被的盖玻片的6孔板内,24 h后取出盖玻片,4%多聚甲醛固定,加入兔抗鼠Nestin(1∶100)单克隆抗体作为一抗,4℃过夜,加入异硫氰酸荧光素(FITC)标记的羊抗兔二抗,孵育30 min,进行观察。

1.2.2 雪旺细胞的分离培养 取体重(100±5)g的SD大鼠,10%水合氯醛3 mL/kg腹腔麻醉后,以右侧臀大肌为中心消毒,铺无菌孔巾,纵行做一长约1.5 cm切口,分离暴露坐骨神经,于近端结扎,逐层缝合。1周后,处死大鼠,分离双侧坐骨神经,右侧坐骨神经由于结扎变性,SCs受刺激而发生激活,称激活态SCs;左侧为正常坐骨神经,提取的SCs称为普通SCs。双侧坐骨神经均剪成5 mm小段,加入0.1%胰蛋白酶和0.25%的Ⅱ型胶原酶消化1 h,反复吹打至单细胞悬液,加入5 mL DMEM/F12培养基终止消化。采用差速贴壁法,使成纤维细胞贴壁,未贴壁细胞移入含20 ng/mL EGF和20 ng/mL的DMEM/F12培养液中行原代培养。

1.2.3 细胞的分组与联合培养 将细胞随机分为3组,A组为激活态SCs与NSCs联合培养,B组为普通SCs与NSCs联合培养,C组NSCs单独培养,作为对照。细胞的联合培养采用0.2 μm的6孔Transwell培养皿,上室为SCs,下室为NSCs。培养基采用不含任何营养因子的DMEM/F12培养基。于培养的第2、4、6天分别对下室细胞行MTT染色,检测细胞活性。

1.2.4 Western blot检测激活态雪旺细胞营养因子的表达水平 联合培养1周后,取A、B两组上室细胞,提取总蛋白,进行电泳、转膜、封闭,分别加入兔抗鼠EGF(1∶100)、bFGF(1∶200)单克隆抗体,4℃过夜,加入AP显色液显色。用Image-ProPlus专业图像分析系统测定平均光密度值,并进行统计学分析。

1.2.5 神经干细胞分化的免疫荧光检测 联合培养1周后,将多聚赖氨酸包被的盖玻片放入下室,24 h后取出盖玻片,4%多聚甲醛固定,分别加入兔抗鼠MAP-2(1∶200)、GFAP(1∶200)单克隆抗体作为一抗,4℃过夜,加入FITC标记的羊抗兔IgG二抗(1∶200),室温孵育30 min。在100倍荧光显微镜下随机选取6个不同视野,计数抗原阳性细胞数与全部细胞数,计算阳性细胞数在全部细胞中的比值,公式为:阳性细胞比值=阳性细胞数/细胞总数×100%。

1.3 统计学方法

采用统计软件SPSS 18.0对数据进行分析,正态分布计量资料以均数±标准差(x±s)表示,多组间比较采用方差分析,两两比较采用LSD-t检验。以P < 0.05为差异有统计学意义。

2 结果

2.1 神经干细胞的分离培养与鉴定

NSCs在培养瓶内悬浮生长,呈圆形,核较大,折光性强。于培养第5天开始聚集成团,呈球样生长,第7天左右可见部分神经球出现贴壁,并发出短小突起。传4代后,NSCs形态稳定,未见异型性改变。荧光染色可见聚集成球的NSCs发出绿色荧光,可见因贴壁而发出的短促突起。

2.2 激活态雪旺细胞的分离培养

结扎SD大鼠右侧坐骨神经后,大鼠出现右下肢跛行,1周后有足部有溃疡形成。分离双侧坐骨神经,可见结扎远端坐骨神经明显较对侧增粗。细胞经差速贴壁以后可见胞体较大的成纤维细胞得以去除,去除后细胞呈梭形,3 d后,胞体增长,发出突起,至7 d细胞大量增殖呈旋涡状排列,激活态SCs生长速度较普通SCs的生长速度快。

2.3 各组神经干细胞的分化状态

A组NSCs在培养5 d后即开始发出较长突起,出现贴壁细胞,细胞形态增长,细胞间借突起形成网状连接。B组细胞在8 d后开始出现分化,但细胞发出的突起较A组短小。C组细胞仍呈球形生长,少见贴壁细胞。应用MTT法检测三组细胞的平均光密度值,可见第2、4天三组细胞的活性差异无统计学意义(P > 0.05),第6天C组活细胞比例开始降低,A、B组与C组比较差异有统计学意义(P < 0.05),A组与B组比较差异无统计学意义(P > 0.05)。见图1。

A为激活态SCs作用下的NSCs活性检测;B为普通SCs作用下的NSCs活性检测;C为单独培养的NSCs活性检测

图1 MTT法对神经干细胞活性的检测

2.4 激活态雪旺细胞营养因子的表达水平

A、B两组上室细胞提取的蛋白经电泳后,条带清晰,两组相同蛋白密度有差异,管家基因GAPDH作为内参,电泳条带亮度一致。应用Image-ProPlus专业图像分析系统测定平均光密度值,根据公式:相对量=产物电泳条带密度/GAPDH×100%,计算各组蛋白量,可见A组细胞EGF、bFGF的表达水平均高于B组,差异有统计学意义(P < 0.05)。见表1。

表1 雪旺细胞营养因子表达的平均光密度值(x±s)

注:EGF:表皮生长因子,bFGF:碱性成纤维细胞生长因子

2.5 神经干细胞分化的免疫荧光检测

对三组细胞分别进行MAP-2和GFAP染色,计算每高倍视野阳性细胞的比例。A组细胞MAP-2染色阳性率明显高于B、C组,差异有统计学意义(P < 0.05);B组MAP-2染色阳性率明显高于C组,差异有统计学意义(P < 0.05)。A组GFAP阳性率明显低于B组,差异有统计学意义(P < 0.05);C组GFAP阳性率明显低于A、B组,差异有统计学意义(P < 0.05)。见表2。

表2 免疫荧光染色阳性细胞在分化细胞中的比例(%,x±s)

注:与A组比较,*P < 0.05;与C组比较,▲P < 0.05

3 讨论

各种外伤或病变所致的周围神经损伤一直以来都是显微外科研究的重点内容。虽然周围神经具有自我修复能力,但是如果缺损大于10 mm以上则很难使近端神经纤维长入[6],从而造成永久性的功能丧失。为此有学者研制出干细胞结合导管支架的技术[7-10],使得周围神经的断端得以重连,然而单纯的形态学重建却难以恢复神经的传导速度。有研究指出NSCs在体内主要分化为胶质细胞,而胶质细胞则会影响神经元的传导速度[11-12],因此NSCs如何高效分化出神经元就成为研究关键。

周围神经损伤后,损伤远端轴突发生华勒变性,继而坏死溶解,周围的SCs此时会发生增殖,一方面吞噬溶解的轴突,另一方面分泌大量神经营养因子促进近端轴突的长入[13-14]。本研究利用雪旺细胞这一特点,于体外建立SCs,使其持续分泌多种神经营养因子,诱导NSCs的分化。有研究指出,NSCs的生长分化需要多种营养因子的协同作用[15-16],尽管某一因子的浓度较低,但却是不可或缺的。体外添加营养因子则难以满足干细胞分化的要求[17-18]。本研究运用细胞联合培养的方式,通过细胞间的旁分泌作用,克服这一不足。同时,应用Transwell培养皿,借助聚碳酸酯膜的作用使细胞间不发生接触,排除了细胞间的相互干扰。

本研究的结果可以看出,与普通SCs相比,激活态SCs对NSCs的诱导作用存在时间短、神经元分化率高等优点。但是从MTT染色可以看出,由于各组只应用单纯DMEM/F12培养基培养,活细胞比例随时间呈下降趋势,说明单纯在体外依靠雪旺细胞分泌的营养因子难以满足NSCs的生长需求,从而解释了体内移植神经干细胞死亡率高的原因[19-20]。这就需要进一步探索能够保持体内高浓度营养因子的方法,从而维持NSCs的体内生长状态。

由于条件限制,本实验尚存在一些不足之处,对SCs分泌的因子只进行了较为重要的EGF和bFGF的检测,如果能检测出全部营养因子的表达水平,将有助于进一步的详细分析。

综述所述,激活态雪旺细胞能够促进神经干细胞向神经元的分化进程,提高神经元的分化比例。

[参考文献]

[1] Cheng LN,Duan XH,Zhong XM,et al. Transplanted neural stem cells promote nerve regeneration in acute peripheral nerve traction injury:assessment using MRI [J]. AJR Am J Roentgenol,2011,196(6):1381-1387.

[2] Chang DJ,Oh SH,Lee N,et al. Contralaterally transplanted human embryonic stem cell-derived neural precursor cells(ENStem-A)migrate and improve brain functions in stroke-damaged rats [J]. Exp Mol Med,2013,45:53.

[3] Akama K,Horikoshi T,Nakayama T,et al. Proteomic identification of differentially expressed genes during differentiation of cynomolgus monkey(Macaca fascicularis)embryonic stem cells to astrocyte progenitor cells in vitro [J]. Biochim Biophys Acta,2013,1834(2):601-610.

[4] Stringari C,Nourse JL,Flanagan LA,et al. Phasor fluorescence lifetime microscopy of free and protein-bound NADH reveals neural stem cell differentiation potential [J]. PLoS One,2012,7(11):48014.

[5] Jha RM,Liu X,Chrenek R,et al. The postnatal human filum terminale is a source of autologous multipotent neurospheres capable of generating motor neurons [J]. Neurosurgery,2013, 72(1):118-129.

[6] 李高山.骨髓基质干细胞与施万细胞联合移植对周围神经缺损的修复作用[J].中国医药导报,2013,10(21):90-93.

[7] Emborg ME,Liu Y,Xi J,et al. Induced pluripotent stem cell-derived neural cells survive and mature in the nonhuman primate brain [J]. Cell Rep,2013,3(3):646-650.

[8] Heermann S,Motlik K,Hinz U,et al. Glia cell line-derived neurotrophic factor mediates survival of murine sympathetic precursors [J]. J Neurosci Res,2013,91(6):780-785.

[9] He BL,Ba YC,Wang XY,et al. BDNF expression with functional improvement in transected spinal cord treated with neural stem cells in adult rats [J]. Neuropeptides,2013,47(1):1-7.

[10] Ishii M,Arias AC,Liu L,et al. A stable cranial neural crest cell line from mouse [J]. Stem Cells Dev,2012,21(17):3069-3080.

[11] Ortega F,Gascon S,Masserdotti G,et al. Oligodendrogliogenic and neurogenic adult subependymal zone neural stem cells constitute distinct lineages and exhibit differential responsiveness to Wnt signalling [J]. Nat Cell Biol,2013,15(6):602-613.

[12] Bonner JF,Haas CJ,Fischer I. Preparation of neural stem cells and progenitors:neuronal production and grafting applications [J]. Methods Mol Biol,2013,1078:65-88.

[13] Lamond R,Barnett SC. Schwann cells but not olfactory ensheathing cells inhibit CNS myelination via the secretion of connective tissue growth factor [J]. J Neurosci,2013,33(47):18686-18697.

[14] Faulkner SD,Ruff CA,Fehlings MG. The potential for stem cells in cerebral palsy-piecing together the puzzle [J]. Semin Pediatr Neurol,2013,20(2):146-153.

[15] Nitzan E,Pfaltzgraff ER,Labosky PA,et al. Neural crest and Schwann cell progenitor-derived melanocytes are two spatially segregated populations similarly regulated by Foxd3 [J]. Proc Natl Acad Sci USA,2013,110(31):12709-12714.

[16] Ren YJ,Zhang S,Mi R,et al. Enhanced differentiation of human neural crest stem cells towards the Schwann cell lineage by aligned electrospun fiber matrix [J]. Acta Biomater,2013,9(8):7727-7736.

[17] Guo X,Spradling S,Stancescu M,et al. Derivation of sensory neurons and neural crest stem cells from human neural progenitor hNP1 [J]. Biomaterials,2013,34(18):4418-4427.

[18] Xia L,Wan H,Hao SY,et al. Co-transplantation of neural stem cells and Schwann cells within poly (L-lactic-co-glycolic acid) scaffolds facilitates axonal regeneration in hemisected rat spinal cord [J]. Chin Med J(Engl),2013,126(5):909-917.

[19] Armati PJ,Mathey EK. An update on Schwann cell biology-immunomodulation, neural regulation and other surprises [J]. J Neurol Sci,2013,333(1-2):68-72.

[20] Guo Z,Wang X,Xiao J,et al. Early postnatal GFAP-expressing cells produce multilineage progeny in cerebrum and astrocytes in cerebellum of adult mice [J]. Brain Res,2013,1532:14-20.

(收稿日期:2013-10-13 本文编辑:李继翔)

[4] Stringari C,Nourse JL,Flanagan LA,et al. Phasor fluorescence lifetime microscopy of free and protein-bound NADH reveals neural stem cell differentiation potential [J]. PLoS One,2012,7(11):48014.

[5] Jha RM,Liu X,Chrenek R,et al. The postnatal human filum terminale is a source of autologous multipotent neurospheres capable of generating motor neurons [J]. Neurosurgery,2013, 72(1):118-129.

[6] 李高山.骨髓基质干细胞与施万细胞联合移植对周围神经缺损的修复作用[J].中国医药导报,2013,10(21):90-93.

[7] Emborg ME,Liu Y,Xi J,et al. Induced pluripotent stem cell-derived neural cells survive and mature in the nonhuman primate brain [J]. Cell Rep,2013,3(3):646-650.

[8] Heermann S,Motlik K,Hinz U,et al. Glia cell line-derived neurotrophic factor mediates survival of murine sympathetic precursors [J]. J Neurosci Res,2013,91(6):780-785.

[9] He BL,Ba YC,Wang XY,et al. BDNF expression with functional improvement in transected spinal cord treated with neural stem cells in adult rats [J]. Neuropeptides,2013,47(1):1-7.

[10] Ishii M,Arias AC,Liu L,et al. A stable cranial neural crest cell line from mouse [J]. Stem Cells Dev,2012,21(17):3069-3080.

[11] Ortega F,Gascon S,Masserdotti G,et al. Oligodendrogliogenic and neurogenic adult subependymal zone neural stem cells constitute distinct lineages and exhibit differential responsiveness to Wnt signalling [J]. Nat Cell Biol,2013,15(6):602-613.

[12] Bonner JF,Haas CJ,Fischer I. Preparation of neural stem cells and progenitors:neuronal production and grafting applications [J]. Methods Mol Biol,2013,1078:65-88.

[13] Lamond R,Barnett SC. Schwann cells but not olfactory ensheathing cells inhibit CNS myelination via the secretion of connective tissue growth factor [J]. J Neurosci,2013,33(47):18686-18697.

[14] Faulkner SD,Ruff CA,Fehlings MG. The potential for stem cells in cerebral palsy-piecing together the puzzle [J]. Semin Pediatr Neurol,2013,20(2):146-153.

[15] Nitzan E,Pfaltzgraff ER,Labosky PA,et al. Neural crest and Schwann cell progenitor-derived melanocytes are two spatially segregated populations similarly regulated by Foxd3 [J]. Proc Natl Acad Sci USA,2013,110(31):12709-12714.

[16] Ren YJ,Zhang S,Mi R,et al. Enhanced differentiation of human neural crest stem cells towards the Schwann cell lineage by aligned electrospun fiber matrix [J]. Acta Biomater,2013,9(8):7727-7736.

[17] Guo X,Spradling S,Stancescu M,et al. Derivation of sensory neurons and neural crest stem cells from human neural progenitor hNP1 [J]. Biomaterials,2013,34(18):4418-4427.

[18] Xia L,Wan H,Hao SY,et al. Co-transplantation of neural stem cells and Schwann cells within poly (L-lactic-co-glycolic acid) scaffolds facilitates axonal regeneration in hemisected rat spinal cord [J]. Chin Med J(Engl),2013,126(5):909-917.

[19] Armati PJ,Mathey EK. An update on Schwann cell biology-immunomodulation, neural regulation and other surprises [J]. J Neurol Sci,2013,333(1-2):68-72.

[20] Guo Z,Wang X,Xiao J,et al. Early postnatal GFAP-expressing cells produce multilineage progeny in cerebrum and astrocytes in cerebellum of adult mice [J]. Brain Res,2013,1532:14-20.

(收稿日期:2013-10-13 本文编辑:李继翔)

[4] Stringari C,Nourse JL,Flanagan LA,et al. Phasor fluorescence lifetime microscopy of free and protein-bound NADH reveals neural stem cell differentiation potential [J]. PLoS One,2012,7(11):48014.

[5] Jha RM,Liu X,Chrenek R,et al. The postnatal human filum terminale is a source of autologous multipotent neurospheres capable of generating motor neurons [J]. Neurosurgery,2013, 72(1):118-129.

[6] 李高山.骨髓基质干细胞与施万细胞联合移植对周围神经缺损的修复作用[J].中国医药导报,2013,10(21):90-93.

[7] Emborg ME,Liu Y,Xi J,et al. Induced pluripotent stem cell-derived neural cells survive and mature in the nonhuman primate brain [J]. Cell Rep,2013,3(3):646-650.

[8] Heermann S,Motlik K,Hinz U,et al. Glia cell line-derived neurotrophic factor mediates survival of murine sympathetic precursors [J]. J Neurosci Res,2013,91(6):780-785.

[9] He BL,Ba YC,Wang XY,et al. BDNF expression with functional improvement in transected spinal cord treated with neural stem cells in adult rats [J]. Neuropeptides,2013,47(1):1-7.

[10] Ishii M,Arias AC,Liu L,et al. A stable cranial neural crest cell line from mouse [J]. Stem Cells Dev,2012,21(17):3069-3080.

[11] Ortega F,Gascon S,Masserdotti G,et al. Oligodendrogliogenic and neurogenic adult subependymal zone neural stem cells constitute distinct lineages and exhibit differential responsiveness to Wnt signalling [J]. Nat Cell Biol,2013,15(6):602-613.

[12] Bonner JF,Haas CJ,Fischer I. Preparation of neural stem cells and progenitors:neuronal production and grafting applications [J]. Methods Mol Biol,2013,1078:65-88.

[13] Lamond R,Barnett SC. Schwann cells but not olfactory ensheathing cells inhibit CNS myelination via the secretion of connective tissue growth factor [J]. J Neurosci,2013,33(47):18686-18697.

[14] Faulkner SD,Ruff CA,Fehlings MG. The potential for stem cells in cerebral palsy-piecing together the puzzle [J]. Semin Pediatr Neurol,2013,20(2):146-153.

[15] Nitzan E,Pfaltzgraff ER,Labosky PA,et al. Neural crest and Schwann cell progenitor-derived melanocytes are two spatially segregated populations similarly regulated by Foxd3 [J]. Proc Natl Acad Sci USA,2013,110(31):12709-12714.

[16] Ren YJ,Zhang S,Mi R,et al. Enhanced differentiation of human neural crest stem cells towards the Schwann cell lineage by aligned electrospun fiber matrix [J]. Acta Biomater,2013,9(8):7727-7736.

[17] Guo X,Spradling S,Stancescu M,et al. Derivation of sensory neurons and neural crest stem cells from human neural progenitor hNP1 [J]. Biomaterials,2013,34(18):4418-4427.

[18] Xia L,Wan H,Hao SY,et al. Co-transplantation of neural stem cells and Schwann cells within poly (L-lactic-co-glycolic acid) scaffolds facilitates axonal regeneration in hemisected rat spinal cord [J]. Chin Med J(Engl),2013,126(5):909-917.

[19] Armati PJ,Mathey EK. An update on Schwann cell biology-immunomodulation, neural regulation and other surprises [J]. J Neurol Sci,2013,333(1-2):68-72.

[20] Guo Z,Wang X,Xiao J,et al. Early postnatal GFAP-expressing cells produce multilineage progeny in cerebrum and astrocytes in cerebellum of adult mice [J]. Brain Res,2013,1532:14-20.

(收稿日期:2013-10-13 本文编辑:李继翔)

猜你喜欢
联合培养神经元
《从光子到神经元》书评
跃动的神经元——波兰Brain Embassy联合办公
应用型人才培养目标下专业学位研究生校企联合培养模式研究
校企高端合作 培养创新型工科博士
浅析《企业战略管理》教学存在的问题及对策
智能科学与技术专业“机器人大脑”双培计划实施
广西无机非金属材料研究生“产学研”联合培养存在的问题及对策
基于二次型单神经元PID的MPPT控制
毫米波导引头预定回路改进单神经元控制
神经元模型的稳定性分析与Hopf分岔控制