植物向光素受体与信号转导机制研究进展

2014-04-09 08:37乔新荣段鸿斌叶兆伟
生物技术通报 2014年8期
关键词:叶绿体生长素信号转导

乔新荣 段鸿斌 叶兆伟

(信阳农林学院,信阳 464000)

植物向光素受体与信号转导机制研究进展

乔新荣 段鸿斌 叶兆伟

(信阳农林学院,信阳 464000)

向光素(phototropin,PHOT)是继光敏色素、隐花色素之后分离的植物蓝光受体。PHOT介导蓝光诱导的向光反应,叶绿体运动,气孔开放、叶片伸展及叶片定位等生理反应。近年来关于PHOT受体介导这些生理反应的分子机制探讨愈来愈受研究者的广泛关注。主要从拟南芥PHOT结构及信号转导方面的研究进展进行综述。

向光素 受体 信号转导

光是自然界中影响植物生长发育的最重要的环境因素之一。蓝光诱导植物向光反应、气孔开放、叶绿体运动、叶片定位及伸展等生理反应[1],促进了弱光下植物的光合作用,降低了强光对光合器官的伤害,从而优化了植物的生长发育。自从蓝光受体向光素(phototropin,PHOT)分离鉴定后,人们对这些蓝光反应分子机制的研究有了突破性的进展,并且成为当今植物生物学研究的热点之一。本文就近年来对模式植物拟南芥PHOT蛋白结构特点、下游信号转导及PHOT与生长素信号、钙信号互作的研究进展进行综述。

1 向光素受体

拟南芥向光素受体有两个,分别为PHOT1和PHOT2两个受光调节的同源蛋白激酶。蓝光刺激后PHOT发生自磷酸化作用,以光强依赖方式调节不同的生理反应[1]。PHOT蛋白分子由N端的光感受区和C端的Ser/Thr蛋白激酶区两大保守结构域组成。N端光感受区包含有两个大约110个氨基酸的重复保守序列LOV(light、oxygen和voltage)1和LOV2[2,3]。LOV1和LOV2的结构非常相似[4]。LOV区会发生一个可逆的光循环。黑暗条件下,LOV区保守的半胱氨酸(cysteine)39(即在每个LOV区的氨基酸的相对位置是39,命名为Cys39)以非共价形式结合一分子的黄素单核苷酸FMN(flavin mononucleotide),在447 nm处达最大光吸收峰[2,5,6]。蓝光刺激下,FMN和Cys39形成共价加合物,在390 nm处达最大光吸收峰[5-7],诱导蛋白构象变化[8,9],激活激酶区。转至黑暗处,数秒至数分钟内,光下的390 nm光谱发生可逆变化,使LOV区回到起始状态447 nm 光谱[5,6]。尽管LOV1和LOV2区显示上面所述的相同的光谱特点,但他们也有显著不同的光化学特性。表现在蓝光激发后,对Cys39与FMN加合物形成的速率(量子效率)以及转入暗处加合物的衰减时间不同[2]。

由于LOV1和LOV2具有上述不同的光反应特点,使其对光的敏感性也不同。而且,PHOT1和PHOT2的LOV1和LOV2区的光感知特点存在差别,导致调节不同的生理反应。突变或敲除PHOT1的LOV1区后,没有影响光感受和自磷酸化作用,黄化苗仍具有向光反应和叶片伸展反应[10,11],而PHOT1的LOV2区突变后不能够恢复双突变phot1 phot2的向光反应和叶片伸展[11]。但PHOT2的LOV1和LOV2区都参与调节向光反应[12]。进一步研究表明,PHOT1的C端激酶区与LOV2之间存在一个大约20个氨基酸的保守的Jα螺旋区,LOV2经Jα螺旋和激酶区的耦合是蓝光诱导PHOT1发生自磷酸化作用所必须的条件[4]。PHOT2的LOV2和激酶区之间的第720位天冬氨酸(Asp)残基突变为天冬酰胺(Asn)后,丧失了ATP结合活性,是光诱导LOV2构象改变激活激酶区的重要位点[13]。将PHOT1和PHOT2的N端和C端互换后证实仅有PHOT1的N端和C端结合会抑制叶绿体回避反应[14]。

PHOT的C末端Ser/Thr蛋白激酶区属于AGC蛋白激酶家族[15]。蓝光诱导PHOT发生自磷酸化作用是引发生理反应的第一步。利用质谱(LC-MS/MS)分析方法,已经在PHOT1的N端、LOV1与LOV2之间的连接区、激酶区及C末端鉴定了多个磷酸化位点[10,16]。其中Ser-851(第851位丝氨酸)是PHOT1蓝光下开启自磷酸化作用的一个重要位点,也是其介导气孔开放,向光性反应,叶绿体聚集运动及叶片伸展所必须的条件[16]。PHOT1和PHOT2都是质膜结合蛋白,但蓝光刺激条件下,部分PHOT1会迅速从质膜释放入胞质及叶绿体外膜[17-19],部分PHOT2迁移至胞质、高尔基体及叶绿体外膜[19-21]。若删除PHOT2的C末端区域,既减弱了PHOT2在高尔基体和叶绿体外膜上的定位,又降低了叶绿体回避运动速率。而降低胞质中PHOT2的表达量并不影响回避运动,表明PHOT2的C区在其定位至叶绿体膜及回避运动中起重要作用[19]。

2 向光素信号转导

自从Briggs团队分离鉴定蓝光受体PHOT1[22]和Kagawa等[23]克隆PHOT2以来,蓝光诱导生理反应的分子机制得到了深入的研究。尤其是近年来,PHOT信号转导途径中相关突变体的分离。PHOT1和PHOT2以光强依赖的方式精细调节植物的许多生理反应。弱蓝光下,PHOT1和PHOT2以功能冗余方式调节叶绿体聚集运动、气孔开放、叶片伸展及定位[1]。PHOT1单独介导抑制下胚轴伸长和强光强下的mRNA降解[24,25]。而PHOT2单独介导强蓝光诱导的叶绿体回避运动和黑暗中叶绿体的定位[26,27]。2.1 PHOT互作信号蛋白

众所周知,蓝光诱导PHOT自磷酸化作用导致胞内信号级联,诱发相关的生理反应。PHOT介导的众多生理反应决定了其信号转导路径的多样性和复杂性。最近,鉴定了3个PHOT1激酶的底物。一个是生长素运输载体蛋白ABCB19(ATP-binding cassette B19),其主要负责生长素从茎尖运输至维管组织,维持生长素的长距离极性运输[28]。在单侧蓝光诱导向光弯曲反应中,PHOT1通过抑制底物ABCB19靶蛋白活性,促进茎尖生长素的横向运输,引起向光弯曲生长[29]。另一个是PHOT1底物Ser/Thr蛋白激酶BLUS1(Blue Light Signaling 1)[30]。PHOT介导气孔开放的基本信号转导路径是PHOT经Ser/Thr蛋白磷酸酶PP1(protein phosphatase 1)激活质膜H+-ATP酶,促进K+吸收,引起气孔开放[31,32]。最新研究表明,PHOT1的C端的Ser-348位点磷酸化底物BLUS1是蓝光诱导气孔开放的关键步骤[30],从而更深层次地阐明了PHOT1如何激活质膜H+-ATP酶。另外,小基因家族PKS(phytochrome kinase substrate)(PKS1-PKS4) 中 的PKS4也 被PHOT1磷酸化[33]。

除上述3个PHOT磷酸化底物外,也分离鉴定了与PHOT互作的下游信号蛋白。NPH3(nonphototropic hypocotyls 3)编码一个745个氨基酸残基组成的植物特有质膜结合蛋白[34]。任何强度的单侧光照射后,拟南芥nph3突变体下胚轴都不发生向光弯曲反应[35]。生化分析质膜结合蛋白NPH3与PHOT1、PHOT2互作[36],作为PHOT共有信号介导下胚轴向光弯曲。进一步分析,NPH3依赖PHOT1发生去磷酸化作用调节向光反应[37]。此外,NPH3也参与调节叶片定位和叶片伸展[36]。与NPH3属同一家族的RPT2(root phototropism 2)蛋白也定位在质膜,RPT2的N端与PHOT1的LOV区、NPH3的N端互作[35]。通过rpt2单突变体及phot1rpt2、phot2rpt2双突变体遗传实验分析表明,RPT2在PHOT1信号转导路径中介导向光反应[35]、叶片伸展及定位[38]。PKS家族最初研究是红光受体光敏素PHY(phytochrome)的底物[39]。后来也发现PKS1和PHOT1、NPH3也发生互作,PKS的单突变、双突变及三突变的下胚轴弯曲度都有不同程度的下降,多突变的弯曲度降低更明显[40]。另外,PKS2与PHOT1、PHOT2互作,其作为PHOT的共有信号调节叶片伸展和定位,但主要作用于PHOT2信号路径[36]。最近,Jaedicke等[41]研究发现过去一直认为定位于细胞核中的PHYA也和PHOT1在质膜上互作,更直接的证明了PHY参与调节向光反应。RCN1是Ser/Thr蛋白磷酸酶2A(PP2A)的一个亚基。phot1-5rcn1-1双突变株系中,PP2A活性降低,增强了蓝光诱导的向光反应和气孔开放。体外实验证明RCN1和PHOT2互作,RCN1活性的降低抑制了PHOT2的去磷酸化水平[42]。Knauer等[43]通过酵母三杂交方法,利用PHOT1/NPH3复合体作诱饵,筛选到一个可以与其结合的未知功能蛋白EHB1(enhanced bending1),根据单侧蓝光照射ehb1突变体下胚轴的弯曲度变化,推测EHB1抑制PHOT1介导的向光弯曲反应。此外,14-3-3蛋白与PHOT1特异结合调节气孔开放[44]。磷脂酰肌醇代谢途关键酶5PTase13(Inositol polyphosphate 5-phosphatase 13) 和 PHOT1互作,负调节PHOT1介导的胞质Ca2+升高[45]。2.2 向光素信号通路中的非互作蛋白

虽然还没有直接证据证明红光受体PHYB与PHOT互作,但由突变体表型推测,PHOT可能通过抑制phyB活性促进叶片伸展,且NPH3是phyB突变体中调节叶片伸展所必须的蛋白[46]。拟南芥CHUP1(chloroplast unusual positioning 1)基因编码一个叶绿体外膜蛋白。chup1与phot2突变体表型相似,都丧失叶绿体回避反应[47,48]。进一步研究证明CHUP1与肌动蛋白G-actin、F-actin及profilin互作[49]。植物特有的KAC(kinesin-like protein for actin-based chloroplast movement)蛋白和F-actin体外互作,kac1kac2双突变完全丧失叶绿体运动[50]。一个与哺乳动物中调节纤毛发育的GRXCR1同源的F-actin结合蛋白THRUMIN1,正调节PHOT介导的叶绿体运动反应[51]。蛋白磷酸酶PP2A(protein phosphatase 2A)催化亚基的一种同型物 PP2A-2能使肌动蛋白解聚因子ADF(Actin depolymerizing factor)去磷酸化。遗传分析pp2a-2、adf1及adf3突变体都降低了强蓝光诱导的叶绿体回避反应[52]。处于PHOT介导气孔开放信号通路中的蛋白磷酸酶PP1由一个催化亚基PP1c和一个调节亚基PRSL1组成。PRSL1的突变抑制了保卫细胞中气孔的开放,且质膜H+泵和H+-ATP酶的磷酸化作用活性降低[53]。因此,PP1在PHOT调节气孔开放的信号通路中处于质膜H+-ATP酶的上游[30]。进一步研究表明PRSL1刺激催化亚基PP1c定位于胞质是其介导气孔开放的前提条件[53]。虽然JAC1(J-domain protein required for chloroplast accumulation response 1)、WEB1(Weak chloroplast movement under blue light 1)和PMI2(Plastid movement impaired 2)参与调控叶绿体运动[54],但还没有直接的证据证明它们处于PHOT信号转导通路中。此外,隐花色素CRY1和光敏素PHYB参与调节光诱导PHOT1转录表达下降。而CRY和PHYA调节光诱导PHOT2转录表达增加[55]。

3 向光素和生长素信号互作

植物向光弯曲生长是由于其向光面与背阴面中生长素的不对称引起的[56]。生长素的运输受生长素外流载体蛋白、内流载体蛋白及相关蛋白的调节。向光性反应由第一和第二两种类型的正向光反应组成,第一正向光反应由短的脉冲光诱导,第二正向光反应由持续光诱导[56]。PHOT1是引发弱蓝光诱导向光反应的基本光受体。强光下PHOT1和PHOT2共同介导向光反应。研究表明PHOT1和生长素信号有直接的互作,如前所述,蓝光刺激下,在下胚轴顶端部位PHOT1磷酸化生长素外流载体ABCB19,抑制其活性。促进生长素在下胚轴中横向分布,并和分布于伸长区的生长素外流载体PIN3协同,诱导下胚轴向光弯曲[29]。与PHOT互作的PKS改变了生长素调节基因的表达模式[57]。此外,有实

验证据表明PHOT1间接调控生长素外流载体PIN1、PNN3、PIN7蛋白[29,58]。Willige等[59]研究表明生长素运输是PHOT1介导向光弯曲的前提,下胚轴向光弯曲反应依赖于D6PK(D6 protein kinase),PIN3,PIN4和PIN7的活性。而Haga和Sakai[60]研究表明pin1、pin3、pin7突变体只是减弱了第一正向光反应,并且多突变体表现叠加效应,而在光持续诱导的第二正向光反应中没有变化,表明PIN调节的向光反应仅应用于瞬时脉冲刺激。此外,生长素转录因子NPH4/ARF7响应内源生长素浓度的变化[61]。当缺乏NPH4/ARF7蛋白时,高亲和性生长素内流载体AUX1调节下胚轴向光反应[62]。转录因子PIF4(Phytochrome interacting factor 4)和PIF5与IAA19、IAA29基因的启动子区G-box区结合,激活了其转录表达,而且IAA19和IAA29蛋白与ARF7生理互作,负调节生长素信号和PHOT1介导的向光反应[63],推测PIF4和PIF5是联系蓝光和生长素介导向光反应的重要信号成分。

4 向光素与钙信号互作

Ca2+作为细胞内重要第二信使,也受蓝光调节。蓝光诱导拟南芥黄化苗胞质Ca2+的增加由PHOT1介导[25]。利用拟南芥突变体证明了PHOT1和PHOT2诱导叶肉细胞胞质Ca2+浓度的增加[64,65]。最新研究发现,磷酸肌醇PI(phosphoinositide)通过胞质Ca2+调节PHOT2介导的叶绿体运动,利用磷脂酶C抑制剂neomycin和U73122抑制了PHOT2介导的叶绿体运动[66]。PMI1可能通过Ca2+诱导肌动蛋白运动,从而调节叶绿体运动反应[67]。在蓝光诱导气孔开放的过程中,Shimazaki 等[68]利用药理学方法证明了Ca2+参与调控蓝光依赖的质子泵和表皮气孔的开放。此外,PKS1与钙调素CAM4/5/7直接互作参与强蓝光诱导的向光反应[69],更进一步提供了Ca2+信号参与PHOT信号转导路径的证据。

5 小结

近20年来,人们对PHOT的结构、光化学特性及信号转导等进行了较深入的研究,已分离鉴定了许多信号转导成员。但由于PHOT1和PHOT2以光强依赖方式调节众多生理反应,且存在功能冗余。因此,PHOT介导的信号网络错综复杂。仍有很多问题需要解决:一是除PHOT外介导的向光反应、叶绿体运动、气孔开放、叶片伸展及定位的其它共有信号成分还未发现;二是PHOT1和PHOT2蓝光激活后向胞质迁移与调节的生理反应之间的关系还不清楚,推测PHOT介导不同的生理反应很可能由PHOT在不同组织器官的特异表达、亚细胞定位及底物蛋白产生,这一假设需相关实验证明;三是尽管已鉴定了许多向光素互作蛋白及中间信号成分,仍然还有许多新的下游信号因子需进行分离鉴定,尤其是PHOT2底物及其信号转导通路中的许多信号成份还未知;四是向光素与钙信号互作调控某一特定生理反应还需要实验进一步证明。

[1] Christie JM. Phototropin blue-light receptors[J]. Annu Rev Plant Biol, 2007, 58(6):21-45.

[2] Christie JM, Salomon M, Nozue K, et al. LOV(light, oxygen, or voltage)domains of the blue-light photoreceptor phototropin(nph1):binding sites for the chromophore flavin mononucleotide[J]. Proc Natl Acad Sci USA, 1999, 96(15):8779-8783.

[3] Christie JM, Swartz TE, Bogomolni RA, et al. Phototropin LOV domains exhibit distinct roles in regulating photoreceptor function[J]. Plant J, 2002, 32(2):205-219.

[4] Kaiserli E, Sullivan S, Jones MA, et al. Domain swapping to assess the mechanistic basis of Arabidopsis phototropin 1 receptor kinase activation and endocytosis by blue light[J]. Plant Cell, 2009, 21(10):3226-3244.

[5] Salomon M, Christie JM, Kneib E, et al. Photochemical and mutational analysis of the FMN-binding domains of the plant blue light receptor, phototropin[J]. Biochemistry, 2000, 39(31):9401-9410.

[6] Swartz TE, Corchnoy SB, Christie JM, et al. The photocycle of a flavin-binding domain of the blue-light photoreceptor phototropin[J]. J Biol Chem, 2001, 276(39):36493-36500.

[7] Kasahara M, Swartz TE, Olney MA, et al. Photochemical properties of the flavin mononucleotide-binding domains of the phototropins from Arabidopsis, rice, and Chlamydomonas reinhardtii[J]. Plant Physiol, 2002, 129(2):762-773.

[8] Harper SM, Neil LC, Gardner KH. Structural basis of a phototropin light switch[J]. Science, 2003, 301(5639):1541-1544.

[9] Corchnoy SB, Swartz TE, Lewism JW, et al. Intramolecular proton transfers and structural changes during the photocycle of the LOV2 domain of phototropin 1[J]. J Biol Chem, 2003, 278(2):724-731.

[10] Sullivan S, Thomson CE, Lamont DJ, et al. In vivo phosphorylation site mapping and functional characterization of Arabidopsis phototopin 1[J]. Mol Plant, 2008, 1(1):178-194.

[11] Cho HY, Tseng TS, Kaiserli E, et al. Physiological roles of the light, oxygen, or voltage domains of phototropin 1 and phototropin 2 in Arabidopsis[J]. Plant Physiol, 2007, 143(1):517-529.

[12] Suetsugu N, Kong SG, Kasahara M, et al. Both LOVI and LOV2 domains of phototropin 2 function as the photosensory domain for hypocotyl phototropic responses in Arabidopsis thaliana(Brassicaceae)[J]. Am J Bot, 2013, 100(1):60-69.

[13] Takayama Y, Nakasako M, Okajima K, et al. Light-induced movement of the LOV2 domain in an Asp720Asn mutant LOV2-kinase fragment of Arabidopsis phototropin 2[J]. Biochem, 2011, 50(7):1174-1183.

[14] Aihara Y, Tabata R, Suzuki T, et al. Molecular basis of the functional specificities of phototropin 1 and 2[J]. Plant J, 2008, 56(3):364-375.

[15] Bögre L, Okrész L, Henriques R, et al. Growth signalling pathways in Arabidopsis and the AGC protein kinases[J]. Trends Plant Sci, 2003, 8(9):424-431.

[16] Inoue S, Kinoshita T, Matsumoto M, et al. Blue light-induced autophosphorylation of phototropin is a primary step for signaling[J]. Proc Natl Acad Sci USA, 2008a, 105(14):5626-5631.

[17] Sakamoto K, Briggs WR. Cellular and subcellular localization of phototropin 1[J]. Plant Cell, 2002, 14(8):1723-1735.

[18] Wan YL, Eisinger W, Ehrhardt D, et al. The subcellular localization and blue-light-induced movement of phototropin 1-GFP in etiolated seedlings of Arabidopsis thaliana[J]. Mol Plant, 2008, 1(1):103-117.

[19] Kong SG, Suetsugu N, Kikuchi S, et al. Both phototropin 1 and 2 localize on the chloroplast outer membrane with distinct localization activity[J]. Plant Cell Physiol, 2013, 54(1):80-92.

[20] Kong SG, Suzuki T, Tamura K, et al. Blue light-induced association of phototropin 2 with the Golgi apparatus[J]. Plant J, 2006, 45(6):994-1005.

[21] Kong SG, Kinoshita T, Shimazaki KI, et al. The C-terminal kinase fragment of Arabidopsis phototropin 2 triggers constitutive phototropin responses[J]. Plant J, 2007, 51(5):862-873.

[22] Liscum E, Briggs WR. Mutations in the NPH1 locus of Arabidopsis disrupt the perception of phototropic stimuli[J]. Plant Cell, 1995, 7(4):473-485.

[23] Kagawa T, Sakai T, Suetsugu N, et al. Arabidopsis NPL1:A phototropin homolog controlling the chloroplast high-light avoidance response[J]. Science, 2001, 291(5511):2138-2141.

[24] Folta KM, Kaufman LS. Phototropin 1 is required for high-fluence blue-light-mediated mRNA Destabilization[J]. Plant Mol Biol, 2003, 51(4):609-618.

[25] Folta KM, Spalding EP. Unexpected roles for cryptochrome 2 and phototropin revealed by high-resolution analysis of blue lightmediated hypocotyl growth inhibition[J]. Plant J, 2001, 26(5):471-478.

[26] Sakai T, Kagawa T, Kasahara M, et al. Arabidopsis nph1 and npl1:blue light receptors that mediate both phototropism and chloroplast relocation[J]. Proc Natl Acad Sci USA, 2001, 98(12):6969-6974.

[27] Tsuboi H, Suetsugu N, Kawai TH, et al. Phototropins and neochrome1 mediate nuclear movement in the fern Adiantum capillus-veneris[J]. Plant Cell Physiol, 2007, 48(6):892-896.

[28] Titapiwatanakun B, Blakeslee JJ, Bandyopadhyay A, et al. ABCB19/PGP19 stabilizes PIN1 in membrane microdomains in Arabidopsis[J]. Plant J, 2009, 57(1):27-44.

[29] Christie JM, Yang H, Richter GL, et al. Phot1 inhibition of ABCB19 primes lateral auxin fluxes in the shoot apex required for phototropism[J]. PLoS Biology, 2011, 9(6):e1001076.

[30] Takemiya A, Sugiyama N, Fujimoto H, et al. Phosphorylation of BLUS1 kinase by phototropins is a primary step in stomatal opening[J].Nature, 2013, 4:2094.

[31] Kinoshita T, Doi M, Suetsugu N, et al. Phot1 and phot2 mediate blue light regulation of stomatal opening[J]. Nature, 2001, 414(6864):656-660.

[32] Shimazaki K, Doi M, Assmann SM, et al. Light regulation of stomatal movement[J]. Annu Rev Plant Biol, 2007, 58:219-247.

[33] Demarsy E, Schepens I, Okajima K, et al. Phytochrome kinase substrate 4 is phosphorylated by the phototropin 1 photoreceptor[J]. EMBO J, 2012, 31(16):3457-3467.

[34] Motchoulski A, Liscum E. Arabidopsis NPH3:A NPH1 Photoreceptor-interacting protein essential for phototropism[J]. Science, 1999, 286(5441):961-964.

[35] Inada S, Ohgishi M, Mayama T, et al. RPT2 is a signal transducer involved in phototropic response and stomatal opening by association with phototropin 1 in Arabidopsis thaliana[J]. Plant Cell, 2004, 16(4):887-896.

[36] Carbonnel MD, Davis P, Roelfsema MRG, et al. The Arabidopsis PHYTOCHROME INASE SUBSTRATE2 protein is a phototropin signaling element that regulates leaf flattening and leaf positioning[J]. Plant Physiol, 2010, 152(3):1391-1405.

[37] Pedmale UV, Liscum E. Regulation of phototropic signaling in Arabidopsis via phosphorylation state changes in the phototropin 1-interacting protein NPH3[J]. J Biol Chem, 2007, 282(27):19992-20001.

[38] Harada A, Takemiya A, Inoue S, et al. Role of RPT2 in leaf positioning and flattening and a possible inhibition of phot2 signaling by phot1[J]. Plant Cell Physiol, 2013, 54(1):36-47.

[39] Lariguet P, Boccalandro HE, Alonso JM, et al. A growth regulatory loop that provides homeostasis to phytochrome A signaling[J]. Plant Cell, 2003, 15(12):2966-2978.

[40] Lariguet P, Schepens I, Hodgson D, et al. PHYTOCHROME KINASE SUBSTRATE 1 is a phototropin 1 binding protein required for phototropism[J]. Proc Natl Acad Sci USA, 2006, 103(26):10134-10139.

[41] Jaedicke K, Lichtenthäler AL, Meyberg R, et al. A phytochromephototropin light signaling complex at the plasma membrane[J]. Proc Natl Acad Sci USA, 2012, 109(30):12231-12236.

[42] Tseng TS, Briggs WR. The Arabidopsis rcn1-1 mutation impairs dephosphorylation of phot2, resulting in enhanced blue light responses[J]. Plant Cell, 2010, 22(2):392-402.

[43] Knauer T, Dümmer M, Landgraf F, et al. A negative effector of blue light-induced and gravitropic bending in Arabidopsis thaliana[J]. Plant Physiol, 2011, 156(1):439-447.

[44] Sullivan S, Thomson CE, Kaiserli E, et al. Interaction specificity of Arabidopsis 14-3-3 proteins with phototropin receptor kinases[J]. FEBS Lett, 2009, 583(13):2187-2193.

[45] Chen X, Lin WH, Wang Y, et al. An inositol polyphosphate 5-Phosphatase functions in PHOTOTROPIN1 signaling in Arabidopis by altering cytosolic Ca2+[J]. Plant Cell, 2008, 20(2):353-366.

[46] Kozuka T, Suetsugu N, Wada M, et al. Antagonistic regulation of leaf flattening by phytochrome B and phototropin in Arabidopsis thaliana[J]. Plant Cell Physiol, 2013, 54(1):69-79.

[47] Oikawa K, Kasahara M, Kiyosue T, et al. CHLOROPLAST UNUSUAL POSITIONING1 is essential for proper chloroplast positioning[J]. Plant Cell, 2003, 15(12):2805-2815.

[48] Oikawa K, Yamasato A, Kong SG, et al. Chloroplast outer envelope protein CHUP1 is essential for chloroplast anchorage to the plasma membrane and chloroplast movement[J]. Plant Physiol, 2008, 148(2):829-842.

[49] Schmidt von Braun S, Schleiff E. The chloroplast outer membrane protein CHUP1 interacts with actin and profilin[J]. Planta, 2008, 227(5):1151-1159.

[50] Suetsugu N, Yamada N, Kagawa T, et al. Two kinesin-like proteins mediate actin-based chloroplast movement in Arabidopsis thaliana[J]. Proc Natl Acad Sci USA, 2010, 107(19):8860-8865.

[51] Whippo CW, Khurana P, Davis PA, et al. THRUMIN1 is a light-regulated actin-bundling protein involved in chloroplast motility[J]. Curr Biol, 2011, 21(1):59-64.

[52] Wen F, Wang J, Xing D. A Protein Phosphatase 2A catalytic subunit modulates blue light-induced chloroplast avoidance movements through regulating actin cytoskeleton in Arabidopsis[J]. Plant Cell Physiol, 2012, 53(8):1366-1379.

[53] Takemiya A, Yamauchi S, Yano T, et al. Identification of a regulatory subunit of protein phosphatase 1 which mediates blue light signaling for stomatal opening[J]. Plant Cell Physiol, 2013, 54(1):24-35.

[54] Kodama Y, Suetsugu N, Kong SG, et al. Two interacting coiled-coil proteins, WEB1 and PMI2, maintain the chloroplast photorelocation movement velocity in Arabidopsis[J]. Proc Natl Acad Sci USA, 2010, 107(45):19591-19596.

[55] Łabuz J, Sztatelman O, Banaś AK, et al. The expression of phototropins in Arabidopsis leaves:developmental and light regulation[J]. J Exp Bot, 2012, 63(4):1763-1771.

[56] Whippo CW, Hangarter RP. Phototropism:bending towards enlightenment[J]. Plant Cell, 2006, 18(5):1110-1119.

[57] Kami C, Allenbach L, Zourelidou M, et al. Reduced phototropism in pks mutants may be due to altered auxin-regulated gene expressionor reduced lateral auxin transport[J]. Plant J, 2014, 77(3):393-403.

[58] Blakeslee JJ, Bandyopadhyay A, Peer WA, et al. Relocalization of the PIN1 auxin efflux facilitator plays a role in phototropic responses[J]. Plant Physiol, 2004, 134(1):28-31.

[59] Willige BC, Ahlers S, Zourelidou M, et al. D6PK AGCVIII kinases are required for auxin transport and phototropic hypocotyl bending in Arabidopsis[J]. Plant Cell, 2013, 25(5):1674-1688.

[60] Haga K, Sakai T. PIN auxin efflux carriers are necessary for pulse-induced but not continuous light-induced phototropism in Arabidopsis[J]. Plant Physiol, 2012, 160(2):763-776.

[61] Harper RM, Stowe EL, Luesse DR, et al. The NPH4 locus encodes the auxin response factor ARF7, a conditional regulator of differential growth in aerial Arabidopsis tissue[J]. Plant Cell, 2000, 12(5):757-770.

[62] Stone BB, Stowe EL, Harper RM, et al. Disruptions in AUX1-dependent auxin influx alter hypocotyl phototropism in Arabidopsis[J]. Mol Plant, 2008, 1(1):129-144.

[63] Sun J, Qi L, Li Y, et al. PIF4 and PIF5 transcription factors link blue light and auxin to regulate the phototropic response in Arabidopsis[J]. Plant Cell, 2013, 25(6):2102-2114.

[64] Harada A, Sakai T, Okada K. Phot1 and phot2 mediate blue light-induced transient increases in cytosolic Ca2+differently in Arabidopsis leaves[J]. Proc Natl Acad Sci USA, 2003, 100(14):8583-8588.

[65] Harada A, Shimazaki KI. Phototropins and blue light-dependent calcium signaling in higher plants[J]. Photochem Photobiol, 2007, 83(1):102-111.

[66] Aggarwal C, Łabuz J, Gabryś H. Phosphoinositides play differential roles in regulating phototropin1-and phototropin2-mediated chloroplast movements in Arabidopsis[J]. PloS One, 2013, 8(2):e55393.

[67] DeBlasio SL, Luesse DL, Hangarter RP. A plant specific protein essential for blue-light-induced chloroplast movements[J]. Plant Physiol, 2005, 139(1):101-114.

[68] Shimazaki K, Goh CH, Kinoshita T. Involvement of intracellular Ca2+in blue light-dependent proton pumping in guard cell protoplasts from Vicia faba[J]. Physiol Plant, 1999, 105(3):554-561.

[69] Zhao X, Wang YL, Qiao XR, et al. Phototropins function in highintensity-blue-light-induced hypocotyls phototropism in Arabidopsis by altering cytosolic calcium[J]. Plant Physiol, 2013, 162(3):1539-1551.

(责任编辑 狄艳红)

Research Advances on Phototropin Receptor and Phototropin Signaling Mechanism in Plant

Qiao Xinrong Duan Hongbin Ye Zhaowei
(Xinyang College of Agriculture and Forestry,Xinyang 464000)

Phototropin(PHOT)is blue-light receptors found following the phytochrome and cryptochrome in plant. PHOT mediate phototropism,chloroplast movement,stomatal opening,leaf expansion and leaf positioning induced by blue-light in higher plants. Research on molecular mechanism of physiological response mediated by PHOT were highly focused in recent years. This paper reviewed research advances of structure characteristics of light sensitivity and signaling mechanism of Arabidopsis phototropin.

Phototropin Receptor Signaling

2013-10-18

乔新荣,女,博士,讲师,研究方向:光生理生态及分子生物学;E-mail:xinrong806@163.com

猜你喜欢
叶绿体生长素信号转导
Wnt/β-catenin信号转导通路在瘢痕疙瘩形成中的作用机制研究
基于科学思维培养的“生长素的调节作用”复习课教学设计
探究生长素对植物生长的两重性作用
生长素的生理作用研究
浅谈生长素对植物的作用
益气活血方对破裂型腰椎间盘突出大鼠p38MAPK 信号转导通路的影响
南方红豆杉叶绿体非编码序列PCR体系优化及引物筛选
HGF/c—Met信号转导通路在结直肠癌肝转移中的作用
从肺肠ERK信号转导通路的变化探讨“肺与大肠相表里”
茶树叶绿体DNA的PCR-RFLP反应体系优化