怎样正确应用动量守恒定律解题

2014-03-15 01:36唐正理
读写算·素质教育论坛 2014年6期
关键词:物理学科动量

唐正理

摘 要 对动量守恒定律的理解及应用,主要有三种情况:相互作用的物体所组成的系统,如果不受外力作用,或所受外力为零,则系统总动量守恒;分方向动量守恒;系统所受外力的合力虽不为零,但如果比此系统内部相互作用的内力小得多的情况下动量守恒。

关键词 物理学科 动量 动量守恒

中图分类号:G633.7 文献标识码:A 文章编号:1002-7661(2014)06-0062-03

一、动量守恒定律的应用有三种情况

1.相互作用的物体所组成的系统,如果不受外力作用,或所受外力为零,则系统总动量守恒

动量守恒定律的研究对象是一个系统,在该系统内部,各个物体之间存在着内力的相互作用,而内力的冲量都是等大反向的,它的作用能使内部各个物体之间的动量好发生转移或传递,但系统的总动量不会发生改变,当系统不受外力作用,或所受外力为零时,就不存在外力的冲量,那么系统的总动量就保持不变。

2.分方向动量守恒

系统所受外力的合力虽不为零,但在某个方向上不受外力或所受外力的合力为零,则在该方向上系统的总动量的分量保持不变,就可以在这个方向上运用动量守恒定律。

3.系统所受外力的合力虽不为零,但如果比此系统内部相互作用的内力小得多,例如碰撞过程中的摩擦力、爆炸过程中的重力等外力比起相互作用的内力来小得多,可以忽略掉外力不计,那么系统的总动量近似守恒。

二、对动量守恒定律的理解及应用

1.矢量性

动量守恒定律是一个矢量方程,因此该利用矢量运算和法则计算。但是对于系统内物体在相互作用前后的速度在同一直线上时,可选择一个正方向,就可以确定系统内物体初、末状态的动量。凡是与规定正方向相同的动量或速度用“+”号表示其方向,但“+”号一般不写上,凡是与正方向相反的动量或速度用“-”表示其方向,这样就把矢量运算转化为代数运算,若求得的动量或速度是正值,表明其方向与所选的正方向相同,若求得的动量或速度是负值,表明其方向与所选定的正方向相反。

2.相对性

由于速度的大小和参考系的选取有关,故动量的大小就与参考系的选取有关,因此应用动量守恒定律时,应注意各物体的速度必须是相对于同一参考系的速度,一般都以地面为参考系。

如果题目给出的速度不是相对同一参考系的速度,我们需要先把它转化为同一参考系的速度。

例如:平静的水面上有一载人小船,船和人的共同质量为M,站立在船上的人手中拿着一质量为m的小球,起初人相对于船静止,船、人球以共同的速度v0在水面上匀速前进,当人相对于船以速度u向相反的方向将小球抛出去后,人和船的速度为多大?

分析:以人、船、小球为一个系统,该系统匀速前进,表明系统所受的合力为零,系统动量守恒,以船的速度v0的方向为正方向,设抛出小球后,人和船的速度为v,则相对于静水的速度为v-u,方向与正方向相反。

根据动量守恒定律有

(M+m)v0=Mv+m(v-u)

故v=v0+方向与原方向相同。

三、动量守恒定律的两种模型

在运用动量守恒定律处理问题时,常常遇到以下两种模型:

1.人船模型

人船模型的适应条件是两个物体组成的系统在运动过程中动量守恒,并且总动量为零,两物体在其内力的相互作用下各物体的动量虽然都在变化,但动量仍为零,即0=Mv1-mv2。系统在运动过程中的平均动量也守恒,0=Mv1-mv2。进一步可得:,此式表明:在两个物体相互作用的过程中,如果物体组成的系统动量守恒,那么在运动过程中物体的位移之比就等于质量的反比。

2.子弹木块模型

这类问题的特点是:木块最初静止在光滑的水平面上,子弹射入木块后留在木块内和木块合为一体,此过程动量守恒,但机械能不守恒。

例如:在高为h=10m的高台上,放一质量为M=9.9kg的木块,它与平台边缘的距离L=1m,今有一质量为m=0.1kg的子弹以v0的水平向右的射入木块(作用时间极短)并留在木块中如图,木块向右滑行并冲出平台,最后落在离平台边缘水平距离为x=4m处,已知木块与平台的动摩擦因数为u=,g=10m/s2,求

(1)木块离开平台时的速度大小。

(2)子弹射入木块的速度大小。

解析:题中要以子弹和木块组成的系统为研究对象,子弹进入木块并留在木块的过程中,由于作用的时间极短,可认为木块的位置没有变,这一过程中系统竖直方向上合力为零,在水平方向,平台对木块的摩擦力是系统受到的外力,但是在这一瞬间,子弹对木块的作用力远远大于平台对木块的摩擦力,即内力远远大于外力,因此可认为这一过程中系统动量守恒。由动量守恒定律可求出作用结束时的速度大小,然后物体以这一速度在平台上滑动,最后离开平台做一平抛。

(1)设本块离开平台时的速度为V1

x=v1t,h=gt2

x=x=4€譵/s=4m/s

(2)设子弹射入木块后,子弹与木块的共同速度为V,则木块向右滑行到达平台边缘的速度为V1,在这一过程中木块向左的加速度大小为a==ug=4.5m/s2

由运动学公式有:v12-v2=2(-a)L

v==5m/s

在子弹与木块的作用过程中,由动量守恒定律得:

mv0=(M+m)v

v0==500m/s

四、爆炸与碰撞的比较

对爆炸和碰撞的比较如下:

1.爆炸、碰撞类问题的共同特点是物体之间的相互作用突然发生,相互作用的力是变力,作用力很大,且远远大于系统所受的外力,故都可以用动量守恒定律来处理。

2.在爆炸过程中,由化学能等其他形式的能转化为内能,所以爆炸后系统的动能会增加;在碰撞过程中,系统的总动能不可能增加,除了弹性碰撞外(弹性碰撞过程动能守恒),系统的总动能会减少,减少的动能一般转化为内能。

3.由于爆炸、碰撞类问题作用时间很短,作用过程中物体的位移很小,一般可忽略不计,可以把作用过程作为一个理想化过程处理,即作用后还从作用前瞬间的位置以新的动量开始运动。

(责任编辑 刘 馨)endprint

摘 要 对动量守恒定律的理解及应用,主要有三种情况:相互作用的物体所组成的系统,如果不受外力作用,或所受外力为零,则系统总动量守恒;分方向动量守恒;系统所受外力的合力虽不为零,但如果比此系统内部相互作用的内力小得多的情况下动量守恒。

关键词 物理学科 动量 动量守恒

中图分类号:G633.7 文献标识码:A 文章编号:1002-7661(2014)06-0062-03

一、动量守恒定律的应用有三种情况

1.相互作用的物体所组成的系统,如果不受外力作用,或所受外力为零,则系统总动量守恒

动量守恒定律的研究对象是一个系统,在该系统内部,各个物体之间存在着内力的相互作用,而内力的冲量都是等大反向的,它的作用能使内部各个物体之间的动量好发生转移或传递,但系统的总动量不会发生改变,当系统不受外力作用,或所受外力为零时,就不存在外力的冲量,那么系统的总动量就保持不变。

2.分方向动量守恒

系统所受外力的合力虽不为零,但在某个方向上不受外力或所受外力的合力为零,则在该方向上系统的总动量的分量保持不变,就可以在这个方向上运用动量守恒定律。

3.系统所受外力的合力虽不为零,但如果比此系统内部相互作用的内力小得多,例如碰撞过程中的摩擦力、爆炸过程中的重力等外力比起相互作用的内力来小得多,可以忽略掉外力不计,那么系统的总动量近似守恒。

二、对动量守恒定律的理解及应用

1.矢量性

动量守恒定律是一个矢量方程,因此该利用矢量运算和法则计算。但是对于系统内物体在相互作用前后的速度在同一直线上时,可选择一个正方向,就可以确定系统内物体初、末状态的动量。凡是与规定正方向相同的动量或速度用“+”号表示其方向,但“+”号一般不写上,凡是与正方向相反的动量或速度用“-”表示其方向,这样就把矢量运算转化为代数运算,若求得的动量或速度是正值,表明其方向与所选的正方向相同,若求得的动量或速度是负值,表明其方向与所选定的正方向相反。

2.相对性

由于速度的大小和参考系的选取有关,故动量的大小就与参考系的选取有关,因此应用动量守恒定律时,应注意各物体的速度必须是相对于同一参考系的速度,一般都以地面为参考系。

如果题目给出的速度不是相对同一参考系的速度,我们需要先把它转化为同一参考系的速度。

例如:平静的水面上有一载人小船,船和人的共同质量为M,站立在船上的人手中拿着一质量为m的小球,起初人相对于船静止,船、人球以共同的速度v0在水面上匀速前进,当人相对于船以速度u向相反的方向将小球抛出去后,人和船的速度为多大?

分析:以人、船、小球为一个系统,该系统匀速前进,表明系统所受的合力为零,系统动量守恒,以船的速度v0的方向为正方向,设抛出小球后,人和船的速度为v,则相对于静水的速度为v-u,方向与正方向相反。

根据动量守恒定律有

(M+m)v0=Mv+m(v-u)

故v=v0+方向与原方向相同。

三、动量守恒定律的两种模型

在运用动量守恒定律处理问题时,常常遇到以下两种模型:

1.人船模型

人船模型的适应条件是两个物体组成的系统在运动过程中动量守恒,并且总动量为零,两物体在其内力的相互作用下各物体的动量虽然都在变化,但动量仍为零,即0=Mv1-mv2。系统在运动过程中的平均动量也守恒,0=Mv1-mv2。进一步可得:,此式表明:在两个物体相互作用的过程中,如果物体组成的系统动量守恒,那么在运动过程中物体的位移之比就等于质量的反比。

2.子弹木块模型

这类问题的特点是:木块最初静止在光滑的水平面上,子弹射入木块后留在木块内和木块合为一体,此过程动量守恒,但机械能不守恒。

例如:在高为h=10m的高台上,放一质量为M=9.9kg的木块,它与平台边缘的距离L=1m,今有一质量为m=0.1kg的子弹以v0的水平向右的射入木块(作用时间极短)并留在木块中如图,木块向右滑行并冲出平台,最后落在离平台边缘水平距离为x=4m处,已知木块与平台的动摩擦因数为u=,g=10m/s2,求

(1)木块离开平台时的速度大小。

(2)子弹射入木块的速度大小。

解析:题中要以子弹和木块组成的系统为研究对象,子弹进入木块并留在木块的过程中,由于作用的时间极短,可认为木块的位置没有变,这一过程中系统竖直方向上合力为零,在水平方向,平台对木块的摩擦力是系统受到的外力,但是在这一瞬间,子弹对木块的作用力远远大于平台对木块的摩擦力,即内力远远大于外力,因此可认为这一过程中系统动量守恒。由动量守恒定律可求出作用结束时的速度大小,然后物体以这一速度在平台上滑动,最后离开平台做一平抛。

(1)设本块离开平台时的速度为V1

x=v1t,h=gt2

x=x=4€譵/s=4m/s

(2)设子弹射入木块后,子弹与木块的共同速度为V,则木块向右滑行到达平台边缘的速度为V1,在这一过程中木块向左的加速度大小为a==ug=4.5m/s2

由运动学公式有:v12-v2=2(-a)L

v==5m/s

在子弹与木块的作用过程中,由动量守恒定律得:

mv0=(M+m)v

v0==500m/s

四、爆炸与碰撞的比较

对爆炸和碰撞的比较如下:

1.爆炸、碰撞类问题的共同特点是物体之间的相互作用突然发生,相互作用的力是变力,作用力很大,且远远大于系统所受的外力,故都可以用动量守恒定律来处理。

2.在爆炸过程中,由化学能等其他形式的能转化为内能,所以爆炸后系统的动能会增加;在碰撞过程中,系统的总动能不可能增加,除了弹性碰撞外(弹性碰撞过程动能守恒),系统的总动能会减少,减少的动能一般转化为内能。

3.由于爆炸、碰撞类问题作用时间很短,作用过程中物体的位移很小,一般可忽略不计,可以把作用过程作为一个理想化过程处理,即作用后还从作用前瞬间的位置以新的动量开始运动。

(责任编辑 刘 馨)endprint

摘 要 对动量守恒定律的理解及应用,主要有三种情况:相互作用的物体所组成的系统,如果不受外力作用,或所受外力为零,则系统总动量守恒;分方向动量守恒;系统所受外力的合力虽不为零,但如果比此系统内部相互作用的内力小得多的情况下动量守恒。

关键词 物理学科 动量 动量守恒

中图分类号:G633.7 文献标识码:A 文章编号:1002-7661(2014)06-0062-03

一、动量守恒定律的应用有三种情况

1.相互作用的物体所组成的系统,如果不受外力作用,或所受外力为零,则系统总动量守恒

动量守恒定律的研究对象是一个系统,在该系统内部,各个物体之间存在着内力的相互作用,而内力的冲量都是等大反向的,它的作用能使内部各个物体之间的动量好发生转移或传递,但系统的总动量不会发生改变,当系统不受外力作用,或所受外力为零时,就不存在外力的冲量,那么系统的总动量就保持不变。

2.分方向动量守恒

系统所受外力的合力虽不为零,但在某个方向上不受外力或所受外力的合力为零,则在该方向上系统的总动量的分量保持不变,就可以在这个方向上运用动量守恒定律。

3.系统所受外力的合力虽不为零,但如果比此系统内部相互作用的内力小得多,例如碰撞过程中的摩擦力、爆炸过程中的重力等外力比起相互作用的内力来小得多,可以忽略掉外力不计,那么系统的总动量近似守恒。

二、对动量守恒定律的理解及应用

1.矢量性

动量守恒定律是一个矢量方程,因此该利用矢量运算和法则计算。但是对于系统内物体在相互作用前后的速度在同一直线上时,可选择一个正方向,就可以确定系统内物体初、末状态的动量。凡是与规定正方向相同的动量或速度用“+”号表示其方向,但“+”号一般不写上,凡是与正方向相反的动量或速度用“-”表示其方向,这样就把矢量运算转化为代数运算,若求得的动量或速度是正值,表明其方向与所选的正方向相同,若求得的动量或速度是负值,表明其方向与所选定的正方向相反。

2.相对性

由于速度的大小和参考系的选取有关,故动量的大小就与参考系的选取有关,因此应用动量守恒定律时,应注意各物体的速度必须是相对于同一参考系的速度,一般都以地面为参考系。

如果题目给出的速度不是相对同一参考系的速度,我们需要先把它转化为同一参考系的速度。

例如:平静的水面上有一载人小船,船和人的共同质量为M,站立在船上的人手中拿着一质量为m的小球,起初人相对于船静止,船、人球以共同的速度v0在水面上匀速前进,当人相对于船以速度u向相反的方向将小球抛出去后,人和船的速度为多大?

分析:以人、船、小球为一个系统,该系统匀速前进,表明系统所受的合力为零,系统动量守恒,以船的速度v0的方向为正方向,设抛出小球后,人和船的速度为v,则相对于静水的速度为v-u,方向与正方向相反。

根据动量守恒定律有

(M+m)v0=Mv+m(v-u)

故v=v0+方向与原方向相同。

三、动量守恒定律的两种模型

在运用动量守恒定律处理问题时,常常遇到以下两种模型:

1.人船模型

人船模型的适应条件是两个物体组成的系统在运动过程中动量守恒,并且总动量为零,两物体在其内力的相互作用下各物体的动量虽然都在变化,但动量仍为零,即0=Mv1-mv2。系统在运动过程中的平均动量也守恒,0=Mv1-mv2。进一步可得:,此式表明:在两个物体相互作用的过程中,如果物体组成的系统动量守恒,那么在运动过程中物体的位移之比就等于质量的反比。

2.子弹木块模型

这类问题的特点是:木块最初静止在光滑的水平面上,子弹射入木块后留在木块内和木块合为一体,此过程动量守恒,但机械能不守恒。

例如:在高为h=10m的高台上,放一质量为M=9.9kg的木块,它与平台边缘的距离L=1m,今有一质量为m=0.1kg的子弹以v0的水平向右的射入木块(作用时间极短)并留在木块中如图,木块向右滑行并冲出平台,最后落在离平台边缘水平距离为x=4m处,已知木块与平台的动摩擦因数为u=,g=10m/s2,求

(1)木块离开平台时的速度大小。

(2)子弹射入木块的速度大小。

解析:题中要以子弹和木块组成的系统为研究对象,子弹进入木块并留在木块的过程中,由于作用的时间极短,可认为木块的位置没有变,这一过程中系统竖直方向上合力为零,在水平方向,平台对木块的摩擦力是系统受到的外力,但是在这一瞬间,子弹对木块的作用力远远大于平台对木块的摩擦力,即内力远远大于外力,因此可认为这一过程中系统动量守恒。由动量守恒定律可求出作用结束时的速度大小,然后物体以这一速度在平台上滑动,最后离开平台做一平抛。

(1)设本块离开平台时的速度为V1

x=v1t,h=gt2

x=x=4€譵/s=4m/s

(2)设子弹射入木块后,子弹与木块的共同速度为V,则木块向右滑行到达平台边缘的速度为V1,在这一过程中木块向左的加速度大小为a==ug=4.5m/s2

由运动学公式有:v12-v2=2(-a)L

v==5m/s

在子弹与木块的作用过程中,由动量守恒定律得:

mv0=(M+m)v

v0==500m/s

四、爆炸与碰撞的比较

对爆炸和碰撞的比较如下:

1.爆炸、碰撞类问题的共同特点是物体之间的相互作用突然发生,相互作用的力是变力,作用力很大,且远远大于系统所受的外力,故都可以用动量守恒定律来处理。

2.在爆炸过程中,由化学能等其他形式的能转化为内能,所以爆炸后系统的动能会增加;在碰撞过程中,系统的总动能不可能增加,除了弹性碰撞外(弹性碰撞过程动能守恒),系统的总动能会减少,减少的动能一般转化为内能。

3.由于爆炸、碰撞类问题作用时间很短,作用过程中物体的位移很小,一般可忽略不计,可以把作用过程作为一个理想化过程处理,即作用后还从作用前瞬间的位置以新的动量开始运动。

(责任编辑 刘 馨)endprint

猜你喜欢
物理学科动量
应用动量守恒定律解题之秘诀
原子物理与动量、能量的结合
动量相关知识的理解和应用
聚焦动量观点在电磁感应中的应用
2017年高考动量试题解读
初中物理概念教学新探
关于物理学科探究模式的探索
试论物理教学中创新力的培养
关于有效开展物理课外实验活动的几个建议
物理学科开放性实验教学刍议