肖乾凤(综述),谭茗月(审校)
(中南大学湘雅二医院心血管内科,长沙 410011)
心血管疾病是目前世界上第一大疾病,绝大多数心脏病最终发展结局是心力衰竭,而这些心脏病患者几乎都死于心力衰竭。近年来心力衰竭的诊断和治疗虽然得到了改善,住院率却一直在增加。因此,有必要从分子机制进一步识别心力衰竭中的发展过程,以便为诊断和治疗心力衰竭提供新的方向。微RNA(microRNA,miRNA)是一类内源性的高度保守的小分子非编码RNA,通过与靶信使RNA的3′端结合,使其降解或抑制其翻译,从而参与基因的转录和表达调控,调节机体细胞增殖、分裂、凋亡等过程,调控多种疾病的病理过程。心力衰竭中也可以检测到多种miRNA水平的变化[1]。因此,可以通过一些特定的miRNA水平来诊断心力衰竭,还可以尝试通过特异性地抑制或诱导一些miRNA的表达而从分子水平来治疗心力衰竭。
心力衰竭发展过程中常伴有心肌细胞的坏死和凋亡,而坏死和凋亡是心力衰竭中心脏重构的环节之一。各种心脏疾病都会导致心肌细胞功能失调,在缺血、缺氧、应激、负荷过重、感染等条件下,心肌细胞会发生坏死和凋亡,许多研究发现miRNA参与该病理过程。
Hu等[2]发现在小鼠心肌梗死模型中,miR-210可通过作用于蛋白酪氨酸磷酸酶抑制心肌细胞凋亡。Mutharasan等[3]证实了在缺氧时miR-210上升,miR-210过表达可减少氧化应激产物及其引起的细胞凋亡,氧化应激时,p53和Akt(一种丝氨酸/苏氨酸蛋白激酶)可使miR-210升高,而miR-210水平上升能减少AIFM3(一种凋亡诱导因子)水平,亦能作用于缺氧诱导因子(hypoxia-inducible factor,HIF)-32,但miR-210主要是通过减少线粒体活性氧类产物保护心肌细胞的。小鼠miR-214基因缺失可引起心脏收缩性丧失,增加凋亡。缺血性损伤时,miR-214能抑制钠/钙变换蛋白1(NCX1)和抑制钙/钙调蛋白依赖性蛋白Ⅱδ(calcium/calmodulin-dependent protein Ⅱ delta,CaMⅡδ)、亲环蛋白D和凋亡基因Bcl-2家族成员等Ca2+信号通路,维持心肌细胞Ca2+稳态,防止心肌细胞因Ca2+负荷过重而导致的死亡[4]。在缺血性条件下,miR-24过表达可使小鼠心肌乳酸脱氢酶释放减少,细胞稳定性增加,坏死和凋亡率减低。研究表明,miR-24是通过抑制Bcl-2L11(Bcl-2-like 11)来保护心脏的[5]。Qian等[6]发现,miR-24直接抑制BH3区域,抑制蛋白质Bim(前凋亡Bcl-2家族蛋白)的表达,抑制心肌细胞凋亡。Wang等[7]研究发现,在心肌细胞中,miR-494直接作用于前凋亡蛋白(PTEN、ROCK1、CaMIIδ等)和抗凋亡蛋白(成纤维细胞生长因子受体2、白细胞抑制因子),激活线粒体信号通路Akt,保护心脏缺血再灌注损伤。miR-145过表达可抑制由H2O2引起的细胞坏死,氧化应激产物表达和线粒体结构破坏,它在心脏中的保护作用是通过抑制Bnip3(一种心肌细胞的线粒体凋亡途径的启动因子)的过表达,而Bnip3是心肌细胞中线粒体凋亡通路的起始因子[8]。Wang等[9]发现,miR-499能通过抑制磷酸酶介导的线粒体动力蛋白相关蛋白1(dynamin-related protein-1,DRP1),减低DRP1在线粒体聚集和DRP1介导的线粒体破裂,从而抑制心肌细胞凋亡。在心脏缺氧时,miR-199a是下调的,低氧时补充miR-199a可通过作用于HIF-1ɑ和Sirt1(Sirt1下调脯氨酰1羟化酶2,稳定Hif-1ɑ),抑制HIf-1ɑ的表达和p53的稳定性,减少凋亡[10]。Fang等[11]发现,miR-378缺乏可加重缺氧导致的心肌凋亡和细胞损伤,相反,其过表达能显著增强细胞活性,减少乳酸脱氢酶的释放,抑制凋亡和坏死,其作用机制为miRA-378通过作用于caspase-3,抑制caspase-3的表达,减少心肌细胞的缺血性损伤,在心脏病中治疗凋亡和损伤。但Knezevic等[12]证实了miR-378的相反作用,过表达的miR-378通过直接作用于胰岛素样生长因子1(insulin-like growth factor-1,IGF-1)和减少Akt信号流增强心肌细胞凋亡,抑制miR-378能保护缺氧条件下IGF-1和Akt下调引起的细胞损伤。因此,miR-378对于心肌细胞凋亡的影响还有待于进一步研究。Yeh等[13]发现,在麻醉的心脏中缺氧再灌注时,miR-27a可通过白细胞介素(interleukin,IL)10相关通路调节细胞凋亡。在miR-27a前体转染的心肌细胞中,IL-10水平下降,核因子κB表达下调,能够激活caspase-3和促进凋亡。miR-1和miR-133在心肌凋亡中产生相反的效果,miR-1上调、miR-133下调促进凋亡,反之亦然。miR-1通过作用于热激蛋白(heat shock protein,Hsp)60、Hsp70的3′非翻译区,减少Hsp60和Hsp70的蛋白质水平,从而促进凋亡,而miR-133通过作用于caspase-9基因序列的多个位点,抑制caspase-9的蛋白质和信使mRNA的表达,抑制凋亡[14]。
心脏重构是慢性心功能不全的必要环节,心力衰竭发展过程中最后都伴有心肌肥厚、心肌纤维化、心脏扩大,miRNA对于这个环节也具有十分重要的调节作用。有研究总结了一些调节心肌肥厚的miRNA,其中,miR-1通过下调IGF-1、钙调素、心肌强化因子2、Gata4(一种转录因子)等抑制Ca2+信号通路,抑制心脏肥厚[15-16];在肥厚的心肌中miR-1的表达是下调的,miR-1还可作用于L-型钙通道的β亚基,抑制β2钙通道的表达,减低细胞内Ca2+浓度,从而抑制心肌肥厚[17]。此外,miR-1的减少可使twinfilin-1(一种细胞骨架调节蛋白)表达增加,刺激心肌细胞肥厚[18]。miRNA-133通过作用于CnAβ(一种调节肥厚蛋白磷酸酶的因子)、活化T细胞核因子(nuclear factor of activated T cell,NFAT)c4、Rhoa(一种调节心脏肥厚GDP-GTP交换蛋白)、cdc42(与肥厚相关的信号转导激酶)等下调肥厚蛋白磷酸酶、肥厚转录因子,抗心脏肥厚[15,19]。Dong等[20]发现,抑制磷酸酶或miR-133表达增加可防止心脏肥厚,miR-133通过后转录抑制磷酸酶/NFAT信号,抑制心脏肥厚;因此miR-133a可以调节心肌纤维化和肥厚,减少结缔组织因子表达,减少纤维心肌重构,改善舒张功能[21]。Wang等[22]也报道了miR-1和miR-133通过作用于IGF-1信号调节心脏肥厚。miR-29通过作用于弹性蛋白、原纤维蛋白及Ⅰ、Ⅱ、Ⅲ型胶原蛋白等抑制心肌细胞纤维化[23]。Wang等[24]发现,miR-9通过抑制心肌素而作用于NFATc3信号通路,抑制心脏肥厚;miR-98能抑制血管紧张素受体Ⅱ所致心房脑钠肽信使RNA的上调,通过下调细胞周期蛋白D2抗凋亡抗肥厚,因此内源性miR-98在介导硫氧还蛋白1抑制血管紧张素Ⅱ所致的心脏肥厚中具有重要作用[25]。miR-26b可通过调节Gata4调节心脏肥厚,miR-26b水平降低使Gata4上调,诱导心脏肥厚[26]。miR-30抑制结缔组织生长因子抑制心脏肥厚[22];miR-30b-5P在心脏肥厚中下调,通过抑制肥厚信号CaMIIδ来抑制心脏肥厚[27]。
miR-18b、miR-195、miR-199a、miR-199b、miR-21、miR-23和miR-499等是心脏中致肥厚的miRNA。miR-199b可通过抑制双重特异性酪氨酸磷酸化调节酶1a,增强NFAT信号,促进心脏肥厚[22,28]。miR-208通过抑制甲状腺相关蛋白1和肌生成蛋白(负性调节肌细胞肥厚生长和增殖)及编码重链肌球蛋白β促进心肌肥厚[22,29]。Thum等[30]研究发现,miR-21通过抑制Spry1(sprouty homologue 1,一种酪氨酸激酶调节因子受体),增强胞外信号调节激酶-促分裂原活化蛋白质活性,调节纤维化细胞生长,控制心肌间质的纤维化和肥厚程度。miR-21在心肌梗死后心房纤维化中也是上升的,抑制miR-21可抑制心房纤维化[31]。miR-23a通过抑制Murf1翻译传递心脏肥厚信号NFATc3[22],还通过作用于Foxo3a(一种转录因子)调节心脏肥厚,miR-23a转基因小鼠模型中心脏肥厚,而基因剔除减少心脏肥厚[32];miR-499则通过CnA(一种调节肥厚蛋白磷酸酶的因子)调节肥厚蛋白磷酸酶,促进心脏肥厚[15]。miR-22上调能显著增加细胞面积和影响肥厚标志物的表达,抑制PETN信使RNA 3′端非翻译区的活性和蛋白质表达水平,miR-22下调能促进PETN的表达,有效防止心肌肥厚[33];miRNA-27b过表达可引起心脏肥厚和心功能失调,可能是通过作用于过氧化物酶体增殖物激活受体γ,还能抑制基质金属蛋白酶13,促进心脏纤维化[34,35]。
心力衰竭中常伴随miRNA水平的变化,miR-1、miR-29、miR-30、miR-133、miR-150、miR-7、miR-378等在心力衰竭患者中的表达是下调的,而miR-23a、miR-125、miR-146、miR-195、miR-199、miR-214、miR-181b等是上调的。其中,miR-7和miR-378表达显著下调,而miR-214和miR-181b表达显著上调,这些miRNA从分子机制上影响心力衰竭的发生、发展过程;心力衰竭早期,这四种miRNA的改变可引起信号通路紊乱[36]。还有一些miRNA通过儿茶酚胺β1肾上腺素受体信号通路影响慢性心力衰竭的过程,在儿茶酚胺敏感性下降的心力衰竭中,miR-10、miR-300、miR-302、miR-302水平降低,miR-422显著升高[37]。
miRNA还能作为诊断和治疗心力衰竭的潜在标志物。Satoh等[38]发现在扩张型心肌病患者中,miR-208、miR-499水平上升,且miR-208表达与主要组织相容性复合体的信使RNA表达相关,与不良的临床预后相关。Tijsen等[39]发现,miR-423-5P在心力衰竭中上升最明显,且与N末端脑钠肽前体水平和纽约心功能分级等级相关。血浆miR-126水平与脑钠肽水平、心功能纽约心功能分级呈负相关[40]。miR-133也与脑钠肽水平呈负相关[19]。miR-210也是充血性心力衰竭的良好标志物,在盐敏感心力衰竭小鼠中,miR-210的血浆水平和分子表达水平均升高,且纽约心功能分级Ⅲ-Ⅳ级患者较Ⅱ级和对照组高,miR-210也与脑钠肽水平高度相关,miR-210高的患者脑钠肽改善不明显[41]。血浆脑钠肽水平是诊断心力衰竭的可靠标志物,因此可以依赖这些miRNA作为心力衰竭诊断和预后的标志物,作为心力衰竭诊断的补充和鉴别一些其他原因引起的脑钠肽升高疾病。根据这些miRNA在心力衰竭中的作用机制,通过诱导或抑制某些miRNA的表达来预防和治疗心力衰竭,如miR-212/132缺乏的小鼠可以保护压力负荷过重引起的心力衰竭,miR-132抑制剂可挽救小鼠心脏肥厚和心力衰竭[42]。
miRNA研究为心血管疾病的诊断和治疗开辟了新领域。研究表明,许多miRNA在心力衰竭心肌细胞凋亡、心脏重塑的信号转导过程中都有一定的调节作用,且心力衰竭患者中还可检测到一些miRNA水平的变化,其中miR-423-5P、miR-126、miR-133和miR-210与脑钠肽存在一定的关系,可通过这些特定作用的miRNA来提高对心力衰竭的进一步认识。明确miRNA在心力衰竭中的作用,从分子水平上研究心力衰竭的病理过程,未来可能根据这些miRNA的水平作为诊断心力衰竭和判断其预后的重要标志物。随着对miRNA的深入研究,一些miRNA很有可能成为治疗心力衰竭的靶点,但这一过程仍在探索之中。
[1] van de Vrie M,Heymans S,Schroen B.MicroRNA involvement in immune activation during heart failure[J].Cardiovasc Drugs Ther,2011,25(2):161-170.
[2] Hu S,Huang M,Li Z,etal.MicroRNA-210 as a novel therapy for treatment of ischemic heart disease[J].Circulation,2010,122(11 Suppl):S124-S131.
[3] Mutharasan RK,Nagpal V,IchikawaY,etal.MicroRNA-210 is upregulated in hypoxic cardiomyocytes through Akt-and p53-dependent pathways and exerts cytoprotective effects[J].Am J Physiol Heart Circ Physiol,2011,301(4):H1519-H1530.
[4] Aurora AB,Mahmoud AI,Luo X,etal.MicroRNA-214 protects the mouse heart from ischemic injury by controlling Ca2+overload and cell death[J].J Clin Invest,2012,122(4):1222-1232.
[5] Li DF,Tian J,Guo X,etal.Induction of microRNA-24 by HIF-1 protects against ischemic injury in rat cardiomyocytes[J].Physiol Res,2012,61(6):555-565.
[6] Qian L,Van Laake LW,Huang Y,etal.MiR-24 inhibits apoptosis and represses Bim in mouse cardiomyocytes[J].J Exp Med,2011,208(3):549-560.
[7] Wang X,Zhang X,Ren XP,etal.MicroRNA-494 targeting both proapoptotic and antiapoptotic proteins protects against ischemia/reperfusion-induced cardiac injury[J].Circulation,2010,122(13):1308-1318.
[8] Li R,Yan G,Li Q,etal.MicroRNA-145 protects cardiomyocytes against hydrogen peroxide (H2O2)-induced apoptosis through targeting the mitochondria apoptotic pathway[J].PLoS One,2012,7(9):e44907.
[9] Wang JX,Jiao JQ,Li Q,etal.MiR-499 regulates mitochondrial dynamics by targeting calcineurin and dynamin-related protein-1[J].Nat Med,2011,17(1):71-78.
[10] Rane S,He M,Sayed D,etal.Downregulation of miR-199a derepresses hypoxia-inducible factor-1alpha and Sirtuin 1 and recapitulates hypoxia preconditioning in cardiac myocytes[J].Circ Res,2009,104(7):879-886.
[11] Fang J,Song XW,Tian J,etal.Overexpression of microRNA-378 attenuates ischemia-induced apoptosis by inhibiting caspase-3 expression in cardiac myocytes[J].Apoptosis,2012,17(4):410-423.
[12] Knezevic I,Patel A,Sundaresan NR,etal.A novel cardiomyocyte-enriched microRNA,miR-378,targets insulin-like growth factor 1 receptor:implications in postnatal cardiac remodeling and cell survival[J].J Biol Chem,2012,287(16):12913-12926.
[13] Yeh CH,Chen TP,Wang YC,etal.MicroRNA-27a regulates cardiomyocytic apoptosis during cardioplegia-induced cardiac arrest by targeting interleukin 10-related pathways[J].Shock,2012,38(6):607-614.
[14] Xu C,Lu Y,Pan Z,etal.The muscle-specific microRNAs miR-1 and miR-133 produce opposing effects on apoptosis by targeting HSP60,HSP70 and caspase-9 in cardiomyocytes[J].J Cell Sci,2007,120(Pt 17):3045-3052.
[15] Gladka MM,da Costa Martins PA,De Windt LJ.Small changes can make a big difference-microRNA regulation of cardiac hypertrophy[J].J Mol Cell Cardiol,2012,52(1):74-82.
[16] Ikeda S,He A,Kong SW,etal.MicroRNA-1 negatively regulates expression of the hypertrophy-associated calmodulin and Mef2a genes[J].Mol Cell Biol,2009,29(8):2193-2204.
[17] Wu Y,Geng P,Wang YQ,etal.Effects of microRNA-1 on negatively regulating L-type calcium channel beta2 subunit gene expression during cardiac hypertrophy[J].Zhongguo Ying Yong Sheng Li Xue Za Zhi,2012,28(4):304-308.
[18] Li Q,Song XW,Zou J,etal.Attenuation of microRNA-1 derepresses the cytoskeleton regulatory protein twinfilin-1 to provoke cardiac hypertrophy[J].J Cell Sci,2010,123(Pt 14):2444-2452.
[19] Carè A,Catalucci D,Felicetti F,etal.MicroRNA-133 controls cardiac hypertrophy[J].Nat Med,2007,13(5):613-618.
[20] Dong DL,Chen C,Huo R,etal.Reciprocal repression between microRNA-133 and calcineurin regulates cardiac hypertrophy:a novel mechanism for progressive cardiac hypertrophy[J].Hypertension,2010,55(4):946-952.
[21] Matkovich SJ,Wang W,Tu Y,etal.MicroRNA-133a protects against myocardial fibrosis and modulates electrical repolarization without affecting hypertrophy in pressure-overloaded adult hearts[J].Circ Res,2010,106(1):166-175.
[22] Wang J,Yang X.The function of miRNA in cardiac hypertrophy[J].Cell Mol Life Sci,2012,69(21):3561-3570.
[23] van Rooij E,Sutherland LB,Thatcher JE,etal.Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis[J].Proc Natl Acad Sci U S A,2008,105(35):13027-13032.
[24] Wang K,Long B,Zhou J,etal.miR-9 and NFATc3 regulate myocardin in cardiac hypertrophy[J].J Biol Chem,2010,285(16):11903-11912.
[25] Yang Y,Ago T,Zhai P,etal.Thioredoxin 1 negatively regulates angiotensin II-induced cardiac hypertrophy through upregulation of miR-98/let-7[J].Circ Res,2011,108(3):305-313.
[26] Han M,Yang Z,Sayed D,etal.GATA4 expression is primarily regulated via a miR-26b-dependent post-transcriptional mechanism during cardiac hypertrophy[J].Cardiovasc Res,2012,93(4):645-654.
[27] He J,Jiang S,Li FL,etal.MicroRNA-30b-5p is involved in the regulation of cardiac hypertrophy by targeting CaMKIIδ[J].J Investig Med,2013,61(3):604-612.
[28] da Costa Martins PA,Salic K,Gladka MM,etal.MicroRNA-199b targets the nuclear kinase Dyrk1a in an auto-amplification loop promoting calcineurin/NFAT signalling[J].Nat Cell Biol,2010,12(12):1220-1227.
[29] Callis TE,Pandya K,Seok HY,etal.MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice[J].J Clin Invest,2009,119(9):2772-2786.
[30] Thum T,Gross C,Fiedler J,etal.MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts[J].Nature,2008,456(7224):980-984.
[31] Cardin S,Guasch E,Luo X,etal.Role for MicroRNA-21 in atrial profibrillatory fibrotic remodeling associated with experimental postinfarction heart failure[J].Circ Arrhythm Electrophysiol,2012,5(5):1027-1035.
[32] Wang K,Lin ZQ,Long B,etal.Cardiac hypertrophy is positively regulated by MicroRNA miR-23a[J].J Biol Chem,2012,287(1):589-599.
[33] Xu XD,Song XW,Li Q,etal.Attenuation of microRNA-22 derepressed PTEN to effectively protect rat cardiomyocytes from hypertrophy[J].J Cell Physiol,2012,227(4):1391-1398.
[34] Wang J,Song Y,Zhang Y,etal.Cardiomyocyte overexpression of miR-27b induces cardiac hypertrophy and dysfunction in mice[J].Cell Res,2012,22(3):516-527.
[35] Hou N,Wang J,Li ZH,etal.Cardiomycyte overexpression of miR-27b resulted in cardiac fibrosis and mitochondria injury in mice[J].Yi Chuan,2012,34(3):326-334.
[36] Naga Prasad SV,Duan ZH,Gupta MK,etal.Unique microRNA profile in end-stage heart failure indicates alterations in specific cardiovascular signaling networks[J].J Biol Chem,2009,284(40):27487-27499.
[37] Funahashi H,Izawa H,Hirashiki A,etal.Altered microRNA expression associated with reduced catecholamine sensitivity in patients with chronic heart failure[J].J Cardiol,2011,57(3):338-344.
[38] Satoh M,Minami Y,Takahashi Y,etal.Expression of microRNA-208 is associated with adverse clinical outcomes in human dilated cardiomyopathy[J].J Card Fail,2010,16(5):404-410.
[39] Tijsen AJ,Creemers EE,Moerland PD,etal.MiR423-5p as a circulating biomarker for heart failure[J].Circ Res,2010,106(6):1035-1039.
[40] Fukushima Y,Nakanishi M,Nonogi H,etal.Assessment of plasma miRNAs in congestive heart failure[J].Circ J,2011,75(2):336-340.
[41] Endo K,Naito Y,Ji X,etal.MicroRNA 210 as a biomarker for congestive heart failure[J].Biol Pharm Bull,2013,36(1):48-54.
[42] Ucar A,Gupta SK,Fiedler J,etal.The miRNA-212/132 family regulates both cardiac hypertrophy and cardiomyocyte autophagy[J].Nat Commun,2012,3:1078.