张洪蕾
“2013大学数学建模大赛”刚刚落下帷幕,本届大赛一如既往的精彩。近几年来,“数学建模”这一话题在数学学习中体现出越来越突出的作用。作为基础教育的小学数学,帮助学生建立数学模型也是数学教学的关键所在。小学阶段的数学建模注重基础性、操作性和普及性,一般步骤为:从生活中抽象——运用数学语言数学方式描述——建立数学模型——应用到需要解决的问题中。那么,教师在整合学习资源的时候,就应当注重这些特点,选择合适的切口,让学生能迅速切入到数学建模中,在学习中做到自然深入,具体可以从以下几个方面加以实施。
一、注重生活经验,直接有效地切入
“数学来源于生活,又高于生活”,在数学学习中,学生不是一张白纸,而是具备相当生活经验的鲜活的个体。我们无法像工厂一样用标准化的手段来进行“生产”式教学,而应当充分利用学生从生活中带来的正效经验,帮助学生从生活出发,经过整理、思考等活动,将经验上升到数学思考层次,完成最初的切入。这些从生活中精选出来的生活的、灵动的、典型的“材质”经过数学化的处理,将最快到达学生的“最近发展区”。
比如,在苏教版四年级《事物搭配的规律》教学中,我从学生熟悉的食堂就餐情境出发,调动学生的生活经验,引领学生用数学的眼光来形成思路。(课件出示情境图)
师:食堂今天中午提供了红烧鸡块和红烧狮子头两个荤菜,炒茄子、香菇青菜和炖花菜三个素菜,根据惯例选择一荤一素,一共有多少种不同的搭配方法?
生:六种。
师:你是怎么知道的?
生:我将红烧鸡块和三个素菜分别搭配得到三种方法,再将红烧狮子头跟三个素菜分别搭配,这样一共得出六种。
师:我们来具体操作一下。(课件演示)根据刚才的演示,这个问题一目了然,那么大家想一想,假如没有图片,我们可以怎样来解决这个问题?
生1:我们可以写菜名。
生2:我觉得可以用符号代替。
师:好办法,这样就可以提高解题速度了。如果换个思路,你还有不同的思考方法吗?
生:我觉得也可以从素菜开始想起。
师:果然是不同的思路,想一想,这两种思路有什么异同?
生:从荤菜开始想起,就是两个三;从素菜开始想,就是三个二,结果相同,而且都可以用乘法来解决。
……
在案例中,教师从学生每天就餐的实际情况出发,调动学生每天选菜的经验,让学生最初在头脑中就出现可以从一种菜开始想起的方法,继而引导学生经过用数学符号代替实物到建立数学模型,直到找到用乘法解决这一类问题的规律。由浅入深,层次分明。
二、尝试数学探究,合理规范化发散
在学生数学建模的过程中,数学思考占据重要的作用,一是要用数学的眼光看待问题,用规范的数学化的方法表达、提炼出问题的关键,牢牢把握已知和未知;二是要在猜想、探究、证明、判断等数学思维活动中,探索通往问题解决的路径,并在发散中优化,在优化中掌握。
例如,在苏教版五年级《周期排列中的规律》教学中,学生对于周期排列现象中判断任意一个模型是什么情况的方法已经相当熟悉,但是具体情况下,判断方法并不唯一,让学生经历数学思考,对已建立的数学模型进一步深化认识,拓展方法也是发展学生数学素养的一大重要途径。所以在教学中,我按部就班地出示主题情境图,让学生从盆花的排列情况出发,去独立思考,找出画图、判断单双数、一一列举、列式计算等多种方法,一一辨析,加强认识和理解,然后再在随后的小旗、灯笼等素材的教学中判断这些方法可不可用,简不简便。在经历数学思考的基础上让学生自己体验出方法适用的情况,完成对这一类数学模型的广泛认知。
三、引导辨析反思,刨根问底促深化
学生对于既成的模型有着根深蒂固的理解,在学生具备一定数学思考能力的基础上,让学生经历辨析与反思,对数学模型进行重新审视,用刨根问底的态度来科学地运作建模、释模和运用,对于学生数学素养的提升有着不可或缺的作用。
华应龙老师有一节《游戏规则公平吗》的示范课,这一课的设计正是秉承推翻数学模型,进行有机重组的理念来带给孩子思维冲击的。在学生的固有印象中,抛具有两面的硬币来决定胜负的游戏规则是合理的,尽管在从前的实验中,数学家数以万次的实验都没有巧合地绝对相等,但是学生的生活经验和数学基础告诉孩子抛硬币的方式是科学的,由此引申到是不是具有两面的东西抛起来决定胜负的游戏规则都是科学的呢?这是一个很容易大意的命题,学生在面对这个问题时大部分运用了迁移的方法,认同了这一规则,而华老师的坚持和学生的亲身实践给了这个问题一个最好的诠释。这样的结果打破了学生单纯的“数学模型”,在方法论和数学学习的态度上都给孩子打了一个大大的问号,这对学生以后的数学学习乃至于任何独立探究都是大有裨益的。
由此可见,数学模型的建立不是一个简单的过程,教师只有深入地思考、巧妙地引导才能给学生深刻的、真实的数学学习,才能让学生得到深层次的数学发展。
(责编 罗 艳)endprint