王连生,徐奇友
(中国水产科学研究院黑龙江水产研究所,哈尔滨 150070)
鱼类精氨酸营养研究进展
王连生,徐奇友*
(中国水产科学研究院黑龙江水产研究所,哈尔滨 150070)
精氨酸(Arg)作为鱼类必需氨基酸,参与机体蛋白质合成,一氧化氮、多胺及肌酸的生成,在生长和免疫方面发挥重要作用。文章综述近年来精氨酸对鱼类生长、体成分及免疫功能影响及Arg和赖氨酸(Lys)平衡,为精氨酸在鱼类生产中的应用提供参考。
鱼类;精氨酸;生长;免疫功能
目前,促进生长和控制疾病是鱼类研究中两个主要方面。蛋白质和氨基酸在鱼体组成和新陈代谢中起重要作用。鱼类不能合成其所需所有氨基酸,必需氨基酸缺乏将导致鱼类生长性能和饲料效率降低[1-2]。Arg是鱼类10种必需氨基酸之一[3]。鱼类Arg需要量在1.6%~3.1%,由于氨基酸类型、吸收率以及日粮能量不同影响氨基酸的吸收量[4-5]。此外,Arg在调节免疫功能方面具有重要作用[6]。
Arg是一种碱性氨基酸,分子式为C6H14N4O2,分子质量为174.20 ku,学名2-氨基-5-胍基戊酸,白色晶体或晶体状粉末,天然Arg主要以L-Arg形式存在。在水中结晶产物含2分子结晶水,105℃失去结晶水。在乙醇中结晶产物是无水物,238℃分解,溶于水,微溶于乙醇,不溶于乙醚。机体内Arg主要来源是日粮、机体蛋白质分解及机体内其他氨基酸(谷氨酸、瓜氨酸等)合成。
Arg是机体内唯一含有眯基的氨基酸,代谢过程中可生成肌酸,同时存储高能量磷酸盐使肌肉三磷酸腺苷(ATP)再生[7]。Arg是合成一氧化氮(NO)的前体物质,在内皮型一氧化氮合酶(eNOS)和诱导型一氧化氮合酶(iNOS)的作用下生成NO和瓜氨酸。日粮中添加Arg显著提高鱼血清中总一氧化氮合酶(T-NOS)的活性和肝脏中T-NOS和iNOS活性,生成更多NO[4]。NO在系统水平和细胞水平都是重要多效信号分子,参与机体免疫、血管生成及基因表达。Arg参与氮代谢,在精氨酸酶(是尿素循环中重要酶)作用下生产尿素氮和鸟氨酸(Ornithine,Orn),研究表明,Arg水平增加可显著提高肝脏中精氨酸酶活性[7-9]。Berge等研究表明[10],高Arg组肌肉和血清中Orn的含量高于其他组,肌肉中Arg和Orn呈正相关(Orn=-0.0013+0.1484×Arg,r= 0.925)。Orn在鸟氨酸脱羧酶作用下生产多胺,也可在吡咯啉-5-羧酸还原酶和吡咯啉-5-羧酸脱氨酶作用下生成脯氨酸和谷氨酰胺。日粮中添加Arg显著提高血清中谷氨酰胺含量,脯氨酸含量也有提高趋势[11]。Pohlenz等研究表明[12],随着日粮Arg添加量的增加,血清中Orn、脯氨酸、瓜氨酸、谷氨酸及谷氨酰胺含量显著提高。精氨酸代谢见图1[13]。
图1 精氨酸代谢Fig.1 Diagram of arginine metabolites
日粮中添加精氨酸促进鱼生长,一方面是由于精氨酸能够改善鱼肠道形态结构,研究表明,1%精氨酸能提高肠道末端绒毛高度和肠上皮细胞高度,2%精氨酸提高肠道中段和末端褶皱高度[14];另一方面是由于精氨酸能提高胃、前肠及中肠胃蛋白酶和胰蛋白酶活性,可提高胃和前肠中淀粉酶活性,提高饲料的消化和吸收率[15]。精氨酸促进生长激素和胰岛素的分泌,促进鱼类生长[16]。
日粮中添加1%Arg显著提高杂交条纹鲈末重、特定生长率及饲料转化率,成活率具有提高的趋势[14]。印度鲶鱼日粮中Arg含量在1.60%时,增重率、饲料效率及蛋白质效率最高,以增重率、饲料效率、蛋白质效率及鱼体蛋白质含量分别进行二元回归分析,Arg的需要量分别是1.68%、1.63%、1.61%和1.61%,结果得出印度鲶鱼日粮Arg最适含量是1.63%[17]。印度鲤鱼日粮中Arg含量在1.75%时增重率、蛋白质沉积率、饲料系数及Arg沉积量显著高于其他组[18]。Khan研究表明印度囊鳃鲶日粮Arg含量在1.75%时[19],饲料效率和蛋白质沉积率最高。石斑鱼基础日粮中添加0、0.30%、0.60%、0.90%、1.2%及1.5%晶体Arg,配制成含Arg 2.01%~3.27%6种日粮,研究结果表明,Arg含量在2.01%~2.83%时,增重率、特定生长率及蛋白质效率随Arg添加量增加而提高,以增重率和特定生长率进行二元回归分析,Arg最适含量为2.8%[4]。Ren等以特定生长率和饲料效率进行二元回归分析[20],表明军曹鱼最适Arg含量为2.85%和2.82%。相反,研究表明Arg对鱼类生长性能无影响[20-22],原因可能主要有两方面,一方面由于试验鱼品种不同,另一方面由于试验持续时间不同。
RNA/DNA比值是反映鱼类生长的可靠指标。动物细胞DNA含量相对恒定,但RNA的含量与机体蛋白质合成率密切相关[23]。蛋白质合成量与RNA的含量变化一致,鱼类试验用RNA/DNA比值反映生长[24-25]。Zehra和Khan研究表明[18],Arg添加量在1%~1.75%时,肌肉DNA含量线性降低,RNA含量及RNA/DNA比值提高,这与Abidi研究结果一致[26]。
3.1 Arg对鱼体粗蛋白、粗脂肪、水分及粗灰分含量的影响
Arg含量低于最适量时,鱼体粗蛋白含量随日粮Arg增加而提高,但Arg含量高于最适量时,鱼体粗蛋白含量随Arg添加量的增加而降低。Zhou等研究表明[4],日粮Arg含量在2.01%~3.08%时,肌肉中粗蛋白含量随着Arg增加而提高;但Arg含量在3.08%~3.27%时,随着Arg含量增加而降低。Zehra和Khan研究表明[18],鱼体蛋白质含量与Arg添加量呈二次曲线关系,Arg含量在1.75%时蛋白质沉积量最高。Ren等研究表明[20],日粮中Arg含量在1.76%时,鱼体粗蛋白含量最低,2.96%时,鱼体蛋白质含量最高,高于2.96%时,粗蛋白含量又降低。Luo等研究表明[27],Arg对全鱼粗蛋白含量的影响没有达到显著水平,但肌肉和肝脏粗蛋白含量显著提高。Arg提高蛋白质含量的原因可能是由于精氨酸及代谢产生的谷氨酰胺和NO可以激活肌肉中动物雷帕霉素靶蛋白(mTOR)信号途径,mTOR激活后会促进磷酸化核糖体S6蛋白激酶(p70s6激酶)和真核生物启动子4E-结合蛋白1(eIF4E-BP1)磷酸化,形成用于多肽合成的激活启动复合物,促进蛋白质合成[28-29]。
鱼体粗脂肪含量随着日粮Arg添加量的增加而降低。Zehra和Khan研究表明[18],粗脂肪含量与Arg添加量呈线性关系,随着Arg添加量的增加(1%~2.25%),粗脂肪含量线性降低(4.68%~2.84%),对粗灰分的含量无影响。Khan等研究表明[30],日粮Arg含量在1.5%~2.5%时,与鱼体粗脂肪含量呈负相关(R2=-0.969),与水分含量也呈负相关(R2=-0.994)。Luo等研究表明[27],日粮添加Arg显著降低鱼体粗脂肪含量,肝脏水分含量显著降低。Arg通过内分泌信号调节腺苷酸活化蛋白激酶(AMPK)抑制脂肪酸和类固醇的合成,降低粗脂肪含量[29]。Ren等研究表明[20],Arg对水分和粗脂肪含量无显著影响。
3.2 Arg对鱼体氨基酸组成的影响
Zhou等研究表明[15],日粮中添加Arg提高黑鲷肌肉中亮氨酸、异亮氨酸和Arg含量,对其他必需氨基酸的量无显著影响,总必需氨基酸含量显著提高;非必需氨基酸中谷氨酸、丙氨酸及丝氨酸含量显著提高,对非必需氨基酸总含量的影响没有达到显著水平。Luo等研究表明[27],Arg显著提高全鱼必需氨基酸、非必需氨基酸及总氨基酸的含量,氨基酸沉积率也显著提高(除缬氨酸和异亮氨酸外)。Zhou等研究表明[4],Arg对石斑鱼肝脏必需氨基酸组成没有显著影响,日粮Arg含量3.08%时,肌肉必需氨基酸和Arg的含量显著高于2.01%组。
3.3 Arg对肝体指数、脏体指数及肥满度的影响
Zhou等研究表明[4],2.01%和2.28%Arg组肝体指数显著高于其他组,3.08%Arg组肥满度显著高于2.4%组,脏体指数各组间差异未达到显著水平。Tulli等研究表明[9],日粮中添加Arg显著降低肝体指数。Khan等研究表明[30],Arg含量在2.1%~2.5%时,肝体指数和脏体指数随着Arg添加量的增加而线性提高;Arg含量在1.5%~2.1%时,肥满度随着Arg添加量的增加而提高,Arg含量高于2.1%时,随着添加量的增加而降低。Zhou等研究表明[31],不同Arg水平对黑鲷肝体指数影响未达到显著水平。
4.1 Arg对非特异性免疫系统的影响
非特异性免疫系统防御机理包括吞噬作用和氧自由基产生,在免疫刺激剂作用下迅速激活,防御病原菌入侵[32]。高Arg能提高天然杀伤细胞毒性及白介素-2含量,提高T-细胞CD3的蛋白表达[33-34]。Arg还能够提高巨噬细胞和中性粒细胞的吞噬作用和杀伤能力,调节淋巴细胞亚群的粘附分子、趋药性及细胞增殖[35-36]。巨噬细胞是鱼体中最重要免疫活性细胞,活性是反映和评价鱼类免疫水平重要指标。巨噬细胞作用的提高主要是由于超氧阴离子产生增加,超氧阴离子被认为是巨噬细胞杀菌的主要成分[37]。Cheng等研究表明[14],Arg显著提高细胞外超氧阴离子和中性粒细胞氧自由基的产生,细胞内超氧阴离子的含量也有提高的趋势,但差异没有达到显著水平。Arg缺乏导致肾脏巨噬细胞产生的超氧离子和血液中性粒细胞产生的氧自由基量显著降低[12]。
研究表明日粮Arg含量影响鱼类血液组成[31,38],如血细胞压积、红细胞数及白细胞数,这些指标可以反映机体的造血功能和免疫功能[39]。日粮添加4%Arg显著提高血液中血红蛋白含量、血细胞压积及红细胞数[38]。相反,Zhou等研究表明[4],Arg对血红蛋白含量、血细胞压积及红细胞数都没有显著影响。Cheng等研究表明[14],1%Arg能显著提高杂交条纹鲈血清溶菌酶的活性,溶菌酶是激活补体系统和吞噬细胞的免疫调理素。
4.2 Arg对特异性免疫系统的影响
Pohlenz等究表明[40],斑点叉尾接种爱德华氏菌7 d后,添加4%Arg组血清爱德华氏菌抗体效价显著提高,且脾脏和头肾中蛋白质含量提高;14 d后,Arg组脾脏和头肾淋巴细胞抗爱德华氏菌功能提高。Buentello和Gatlin研究表明[35],斑点叉尾感染爱德华氏菌后,2%Arg日粮能显著提高其成活率。
必需氨基酸包括Arg能提高鱼类的生长性能。必需氨基酸含量过高导致氨排放增加,破坏水质,影响生长[41]。因此,平衡氨基酸才能促进鱼类生长。Kaushik和Fauconeau研究表明[42],Arg和Lys在肠道利用同一种转运载体进行转运。因此,在吸收、转运及代谢方面存在竞争抑制现象。虹鳟血清Arg水平随着Lys添加量的增加降低[42]。Zhou等以黑鲷最适Arg和Lys(2.83/3.25)比例为对照组[31],试验2、3组Lys的含量在对照组基础上分别提高20%,Arg提高或降低20%,4,5组Lys的含量在对照组基础上降低20%,Arg提高或降低20%,6,7,8组Arg的含量与对照组一致,Lys的含量分别提高20%,40%和60%。研究结果表明,对照组最适Arg和Lys比例增重率显著高于其他组,原因是由于饲料摄入量降低、Arg和Lys利用率降低以及吸收的氨基酸分解量增加;添加Arg能部分改善高Lys对黑鲷生长性能、饲料利用率及肝脏精氨酸酶活性的负面影响,表明黑鲷Arg和Lys之间可能存在拮抗作用。军曹鱼饲喂Lys和Arg比例为0.8、1.1和1.8的高植物蛋白饲粮,结果表明,Lys和Arg比例为1.1组鱼的体重、体长及增重率都高于0.8和1.8组[43]。封福鲜等采用3×3双因子试验设计[44],Arg水平为2.41%、4.86%和6.81%,在每个Arg水平分别设1.95%、5.84%和8.27%3个Lys水平,当Arg/Lys为6.81/5.84时,瓦氏黄颡鱼生长最佳,且Arg和Lys水平对瓦氏黄颡鱼的生长有显著的交互作用;在低Arg水平2.41%时,随着日粮中Lys水平升高,瓦氏黄颡鱼特定生长率逐渐升高,且在高Lys水平8.27%时显著高于对照组;在Arg较高水平4.86%和6.81%时,特定生长率随日粮中Lys水平升高呈现先升高后降低趋势,且均在适中Lys水平5.84%组显著高于其他两组1.95%和8.27%。研究表明,日粮过量Lys对斑点叉尾、欧洲鲈鱼及牙鲆的生长性能及血清Arg水平无负面影响[1,45-46]。使用不同品种的鱼得出Arg和Lys关系,不能肯定得出Arg和Lys之间存在拮抗作用[3]。实际生产中配制饲料时须考虑Arg和Lys平衡,既有利于鱼类生长,又可节约饲料成本。
适量添加Arg能够提高鱼类生长性能,改善鱼体营养成分,提高机体免疫力。在添加Arg同时,要考虑Arg与Lys及其他氨基酸之间平衡。目前,关于Arg促进生长及提高免疫功能机理研究相对较少,Arg是通过哪些信号通路或改变哪些基因的表达而影响鱼类的生理与代谢,有待进一步研究。
[1]Alam M S,Teshima S,Koshio S,etal.Arginine requirement of juvenile Japanese flounder Paralichthys olivaceus estimated by growth and biochemical parameters[J].Aquaculture,2002,205: 127-140.
[2]Masagounder K,Hayward R S,Firman J D.Comparison of dietary essential amino acid requirements determined from group-housed versus individually-housed juvenile bluegill,Lepomis macrochirus [J].Aquaculture Nutrition,2010,17:559-571.
[3]NRC(National Research Council).Nutrient requirements of fish and shrimps[S].Washington,D.C.National Academy Press,2011.
[4]Zhou Q C,Zeng W P,Wang H L,et al.Dietary arginine requirement of juvenile yellow grouper Epinephelus awoara[J].Aquaculture, 2012,350-353:175-182.
[5]Simmons L,Moccia R D,Bureau D P.Dietary methionine requirement of juvenile Arctic charr Salvelinus alpinus[J].Aquaculture Nutrition,1999,5:93-100.
[6]Jobgen W S,Fried S K,Fu W J,et al.Regulatory role for the arginine-nitric oxide pathway in metabolism of energy substrates [J].The Journal of Nutritional Biochemistry,2006,17:571-588.
[7]Denis E,Frcsi M D,Lieberman M D,et al.Immunonutrition:the role of arginine[J].Nutrition,1998,14:7-8.
[8]Berge G E,Lied E,Sveier H.Nutrition of Atlantic salmon(Salmo salar):the requirement and metabolism of arginine[J].Comparative Biochemistry and Physiology part A,1997,117:501-509.
[9]Tulli F,Vachot C,Tibaldi E,et al.Contribution of dietary arginine tonitrogenutilizationandexcretioninjuvenileseabass (Dicentrarchus labrax)fed diets differing in protein source[J]. Comparative Biochemistry and Physiology Part A,2007,147: 179-188.
[10]Berge G E,Sveier H,Lied E.Effects of feeding Atlantic salmon (Salmo salar)imbalanced levels of lysine and arginine[J].Aquaculture Nutrition,2002,8:239-248.
[11]Tesser M B,Terjesen B F,Zhang Y,et al.Free-and peptide-based dietary arginine supplementation for the South American fish pacu (Piaractus mesopotamicus)[J].Aquaculture Nutrition,2005,11: 443-453.
[12]Pohlenz C,Buentello A,Helland S J,et al.Effects of dietary arginine supplementation on growth,protein optimization and innate immune response of channel catfish Ictalurus punctatus (Rafinesque 1818)[J].Aquaculture Research,2014,45:491-500.
[13]Carmelo N J,Bobbi L H.Arginine and immunity:a unique perspective[J].Biomed Pharmacother,2002,56:471-482.
[14]Cheng Z,Gatlin D M,Buentello A.Dietary supplementation of arginine and/or glutamine influences growth performance,immune responses and intestinal morphology of hybrid striped bass (Morone chrysops×Morone saxatilis)[J].Aquaculture,2012,362-363:39-43.
[15]Zhou F,Zhou J,Shao Q J,et al.Effects of Arginine-deficient and replete diets on growth performance,digestive enzyme activities and genes expression of black sea bream,Acanthopagrus schlegelii,Juveniles[J].Journal of The World Aquaculture Society,2012, 43:828-839.
[16]Flynn N E,Meininger C J,Haynes T E,et al.The metabolic basis of arginine nutrition and pharmacotherapy[J].Biomedicine and Pharmacotherapy,2002,56:427-438.
[17]Ahmed I.Dietary arginine requirement of fingerling Indian catfish (Heteropneustes fossilis,Bloch)[J].Aquaculture International,2013,21: 255-271.
[18]Zehra S,Khan M A.Dietary arginine requirement of fingerling indian major carp,Catla catla(Hamilton)[J].Journal of The World Aquaculture Society,2013,44:363-373.
[19]Khan M A.Effects of dietary arginine levels on growth,feed conversion,protein productive value and carcass composition of stinging catfish fingerling Heteropneustes fossilis(Bloch)[J].Aquaculture International,2012,20:935-950.
[20]Ren M C,Ai Q H,Mai K S.Dietary arginine requirement of juvenile cobia(Rachycentron canadum)[J].Aquaculture Research, 2014,45:225-233.
[21]Cheng Z Y,Buentello J A,Gatlin D M.Effects of dietary arginine and glutamine on growth performance,immune responses and intestinal structure of red drum,Sciaenops ocellatus[J].Aquaculture,2011,319:247-252.
[22]Fournier V,Gouillou-coustans M F,Metailler R,et al.Excess dietary arginine affects urea excretion but does not improve N utilisation in rainbow trout Oncorhynchus mykiss and turbot Psetta maxima[J].Aquaculture,2003,217:559-576.
[23]Tanaka Y,Gwak W S,Tanaka M,et al.Ontogenetic changes in RNA,DNA and protein contents of laboratory-reared Pacific bluefin tuna Thunnus orientalis[J].Fisheries Science,2007,73: 378-384.
[24]Peck M A,Buckley L J,Caldarone M,et al.Effects of foodconsumption and temperature on growth rate and biochemicalbased indicators of growth in early juvenile Atlantic cod Gadus morhua and haddock Melanogrammus aeglefinus[J].Marine Ecology Progress Series,2003,251:233-243.
[25]Mercaldo-allen R,Kuropat C,Caldarone E M.An RNA:DNA-based growth model for young-of-the-year winter flounder Pseudopleuronectes americanus(Walbaum)[J].Journal of Fish Biology, 2008,72:1321-1331.
[26]Abidi S F,Khan M A.Dietary arginine requirement of fingerling Indian major carp,Labeo rohita(Hamilton)based on growth, nutrient retention efficiencies,RNA/DNA ratio and body composition[J].Journal of Applied Ichthyology,2009,25:707-714.
[27]Luo Z,Liu Y J,Mai K S,et al.Effects of dietary arginine levels on growth performance and body composition of juvenile grouper Epinephelus coioides[J].Journal of Applied Ichthyology,2007,23: 252-257.
[28]Pervin S,Singh R,Hernandez E,et al.Nitric oxide in physiological concentrations targets the translational machinery to increase the proliferation of human breast cancer cells:involvement of mammalian target of rapamycin/eIF4E pathway[J].Cancer Research, 2007,67:289-299.
[29]Yao K,Yin Y L,Chu W,et al.Dietary arginine supplementation increases mTOR signaling activity in skeletal muscle of neonatal pigs[J].Journal of Nutrition,2008,138:867-872.
[30]Khan M A,Zehra S.Dietary arginine requirement of Heteropneustes fossilis fry(Bloch)based on growth,nutrient retention and haematoloical parameters[J].Aquaculture Nutrition,2011,17: 428-428.
[31]Zhou F,Shao Q J,Xiao J X,et al.Effects of dietary arginine and lysine levels on growth performance,nutrient utilization and tissue biochemical profile of black sea bream,Acanthopagrus schlegelii, fingerlings[J].Aquaculture,2010,319:72-80.
[32]Siwicki A K,Anderson D P,Rumsey G L,et al.Dietary intake of immunostimulants by rainbow trout affects non-specific immunity and protection against furunculosis[J].Veterinary Immunology and Immunopathology,1994,41:125-139.
[33]Li P,Yin Y L,Li D,et al.Amino acids and immune function[J]. British Journal of Nutrition,2007,98:237-252.
[34]Choi B S,Martinez-falero I C,Corset C,et al.Differential impact of l-arginine deprivation on the activation and effector functions of T cells and macrophages[J].Journal of Leukocyte Biology, 2009,85:268-277.
[35]Buentello J A,Gatlin D M.Effects of elevated dietary arginine on resistance of channel catfish to exposure to Edwardsiella ictaluri [J].Journal of Aquatic Animal Health,2001,13:194-201.
[36]Abdukalykova S T,Zhao X,Ruiz-feria C A.Arginine and vitamin E modulate the subpopulations of T lymphocytes in broiler chickens[J].Poultry Science,2008,87:50-55.
[37]Secombes C J.Isolation of salmonid macrophages and analysis of their killing activity[M].In:Stolen J S,Fletcher T C,Anderson D, et al.Techniques in Fish Immunology,vol.I.SOS Publications, Fair,Haven,N J,1990:137-154.
[38]Buentello J A,Reyes-becerril M,Romero-geraldo M J,et al. Effects of dietary arginine on hematological parameters and innate immune function of channel catfish[J].Journal of Aquatic Animal Health,2007,19:195-203.
[39]Goldsby R A,Kindt T J,Osborne B A,et al.Immunology[M].5th ed.New York,NY:W.H.Freeman and Co,2003.
[40]Pohlenz C,Buentello A,Criscitiello M F,et al.Synergies between vaccination and dietary arginine and glutamine supplementation improvetheimmuneresponseofchannelcatfishagainst Edwardsiella ictaluri[J].Fish&Shellfish Immunology,2012,33: 543-551.
[41]Hart S D,Brown B J,Gould N L,et al.Predicting the optimal dietary essential amino acid profile for growth of juvenile yellow perch with whole body amino acid concentrations[J].Aquaculture Nutrition,2010,16:248-253.
[42]Kaushik S J,Fauconeau B.Effects of lysine administration on plasma arginine and on some nitrogenous catabolites in rainbow trout[J].Comparative Biochemistry and Physiology part A,1984, 79:459-462.
[43]Nguyen M V,Rønnestad I B L,Lai H V,et al.Imbalanced lysine to arginine ratios reduced performance in juvenile cobia(Rachycentron canadum)fed high pant protein diets[J].Aquacultre Nutrition,2014,20:25-35.
[44]封福鲜,艾庆辉,徐玮,等.精氨酸和赖氨酸对瓦氏黄颡鱼幼鱼生长和非特异性免疫力的影响[J].水产学报,2011,35:1072-1080.
[45]Robinson E H,Wilson R P,Poe W E.Arginine requirement and apparent absence of a lysine-arginine antagonist in fingerling channel catfish[J].The Journal of Nutrition,1981,111:46-52.
[46]Tibaldi E,Tulli F,Lanari D.Arginine requirement and effect of different dietary arginine and lysine levels for fingerling sea bass (Dicentrarchus labrax)[J].Aquaculture,1994,127:207-218.
Research advances in arginine nutrition of fish
WANG Liansheng,XU Qiyou(Heilongjiang River Fishery Research Institute of Chinese Academy of Fishery Sciences,Harbin 150070,China)
Arginine has been shown to be an essential amino acid for fish,it is involved in protein, nitric oxide,polyamine and creatine synthesis and plays important roles in the growth and immune function.This review summarized the effects of arginine on growth,body composition and immune function of fish and the balance of arginine and lysine,in order to provide reference for the application of arginine in fish.
fish;arginine;growth;immune function
S932.4
A
1005-9369(2014)09-0123-06
2013-11-18
现代农业产业技术体系建设专项资金资助(CARS-46-16);黑龙江水产研究所基本科研业务费专项资金(HSY201408)
王连生(1984-),男,助理研究员,博士,研究方向为动物营养与饲料。E-mail:liansheng0429@163.com
*通讯作者:徐奇友,研究员,研究方向为水产动物营养。E-mail:xuqiyou@sina.com
时间2014-9-18 11:28:25[URL]http://www.cnki.net/kcms/detail/23.1391.S.20140918.1128.019.html
王连生,徐奇友.鱼类精氨酸营养研究进展[J].东北农业大学学报,2014,45(9):123-128.
Wang Liansheng,Xu Qiyou.Research advances in arginine nutrition of fish[J].Journal of Northeast Agricultural University, 2014,45(9):123-128.(in Chinese with English abstract)