近年来,素质教育浪潮在全国的普遍推开。就全国来看,改革后的模式大体上分为两种。其一为高二毕业时参加等级考试,先解决三门课程的考试,接下来还是按照改革之前的模式备战六门课高考。另外一种就是九门课全部在高三毕业时进行考试。但是无论怎么改,有一点不会变,那就是数学在整个高中学习中的重要性。那么,针对数学教材改革,我们该采取怎样的教学方法来应对,以更好地培养创新人才呢?
一、注重培养学生的创新精神,教学过程中注意接轨创新题
新课标教学改革,注重培养学生的创新思维,提高学生的创新能力,在数学这门课上,也体现得淋漓尽致。新课标改革以前的数学教学,对于教师而言应该是比较简单的。书本上的知识虽然很多,而且也比较难,但是不管怎么说,知识点都是有限的,教师只需要课前稍微回顾一下这些知识,把公式定理吃透,再准备一些配套的经典例题和练习题,基本上就能让学生很好地理解知识点,完成教学任务。但是新课标改革以后,这基本上就是不可能的了。在新课标数学教学里,知识点的理解和掌握只占了很小的一部分,更多的是运用,也就是创新运用。课堂上,教师不仅需要进行知识点的讲解,还需要对此进行适当的拓展创新,以适应改革后数学考试试题的要求。近年来,在各地的高考试题和一些模拟测试题中,也出现了不少创新题,下面我们就以一例来分析这类创新题。例题:在一个游戏中,规定珠子从三角形的顶端由如图(图略)所示的通道从上往下滑,从下面的六个出口出来,规定猜中出口者获胜。如果是你参加这个游戏,猜中珠子从自左向右数的第三个出口出来的获胜概率为多少。
由图(图略)可知,珠子从第一个出口出来有C05种方法,从第二个出口出来有C15种方法,以此类推,珠子从第三个出口出来的概率为5/16,即珠子从第三个出口出来的概率为5/16,此题得解。
我们以此题为例,可以看出,在现在的数学考试中,很少会有题目是没有任何铺垫就直接进入正题的,通常会给一个题目背景,例如此题就是以游戏为背景,这样的创新出题方法可以很好地激起学生的学习欲望,也能够让学生不再像从前那样对数学的枯燥乏味产生厌烦,一改数学题目枯燥死板的陈旧形象,让学生也能在数学学习中体会到学与玩的结合。这不仅仅是新课标改革后试题的出题方式,同时也是教师在上课过程中需要注意的。素质教育注重学生在枯燥的学习中体会到学习的乐趣,但是知识点本身的枯燥是我们无法改变的,那么我们能为之努力的就是尽力改变讲课方式,用趣味引入话题,让学生的思维能够始终跟着教师的步伐,这样就是我们的成功。
二、注重联系生活,以生活为例引入数学范畴
数学的学习并不是单纯的数字,我们学习数学的目的也并不是单纯的为了和数字打交道,我们所需要的是通过书本上的数学知识,联系到我们的实际生活,学以致用,以课堂上所学的数学知识运用到实际生活中,解决实际生活中我们用常识或是经验无法解决的问题。很多人说数学学了没用,学得那么深奥,实际上却根本不需要这些,只要会加减乘除这些基本的运算就可以了。实际上并非如此,很多与我们切身利益相关的层面都需要用到数学知识。教师在上课过程中,也需要向学生传达这一思想,让学生能够意识到数学学习的重要性。例题:某租赁公司有供出租的汽车100辆,若每辆车月租金为3000元,可将100辆车全部租出,而租金每增加50元,就会多一辆未租出去的车,租出的车每辆每月需要护理费200元。问当月租金定为多少时,能获得最大收益。既然要求月租金,那么我们不妨设月租金为X时能获得最大收益,那么(X-3000)/50即未租出的车,那么公司的收益可以列出公式为200×〔100-(X-3000)/50〕﹙X-200﹚,将此式化简可得收益即:
-(x-4100)2/50+304200。由此式可得,当月租金定位4100元时,能获得最大收益为304200元。
如果没有学习函数知识,我们可能很简单地认为只要租出的车越多,获得的收益就越大,实际上从这个题目中我们可以看出,事实并非如此。这也就告诉我们,数学和我们的实际生活、我们的切身利益还是有着很大关联的。
三、适当让学生接触大学知识,提前接轨,训练思维
在原来的高中数学知识点的基础上,还适当增加了一些大学数学的内容,其目的很明显,就是为了让学生能够在高中数学与大学数学的衔接上能做得更好。翻阅旧版的高中数学教材,我们会发现,高中数学教学知识点还是比较好理解的,没有涉及到一些很虚幻,让人感觉虚无缥缈的东西。但是我们再看一看大学数学教材,就直接跨度到极限和微积分的知识了,对于从来没有接触过这些知识点的学生而言,会觉得短时间内很难接受。但是如果能在高中数学的学习中就对这些知识有最开始的接触,不需要很深入,大致对这些知识点有些许的了解,那么在大学里再深入学习这些知识时,就不会茫然不知所措了。同样,我们以题为例来进行说明。
大学数学第一章就是极限,课改后的高中教材中也涉及到了这个知识点。例题:求函数■(x→0)的极限。首先,由二倍角公式可将分子转化为2sin2■,同理,分母可以转化为x2sin■cos■,分子分母约分可得原式等于■,有极限的性质,即积的极限等于极限的积,所以原式的极限即■ 的极限与■的极限的积。由极限的定义可得■ 的极限为1,因为x→0,所以■的极限为■,二者相乘即可得原式的极限为■。
从这个题目我们可以看出,极限虽然是大学数学的内容,但是和高中甚至初中所学的知识是密不可分的,例如本题中的二倍角公式的运用。因此,要想学好大学数学,也必须要对高中数学有一个全面的把握。虽然在部分地区的高中教材上,极限是列为选修内容的,但是作为高中数学教师,个人认为很有必要向学生讲解这方面的知识,因为极限的运用不仅可以让学生对大学数学有一个提前的了解,能为将来的学习打下更好的基础,而且一个新的数学知识点的学习也是对学生思维的一个挑战和锻炼,也有利于学生从不同的角度去解读和运用高中数学知识。
总之,高中数学的学习,不能仅仅局限于书本的学习,还需要教师不断钻研,注重细节总结,只有这样,才能培养学生的创新能力,让学生学好高中数学。
(江苏省赣榆县赣马高级中学)