谢子填,孙宇锋
(1.韶关学院,广东韶关 512005;2.广东肇庆学院数学与信息科学学院,广东肇庆 526061)
关于一个半离散非齐次核的逆向Hilbert型不等式*
谢子填1,2,孙宇锋1
(1.韶关学院,广东韶关 512005;2.广东肇庆学院数学与信息科学学院,广东肇庆 526061)
应用权函数方法及实分析技巧,给出一个新的带有最佳常数因子的半离散非齐次核的逆向Hilbert型不等式,同时给出它的带有最佳常数因子的等价式.
半离散;Hilbert不等式;Holder不等式;等价式
近年来,人们陆续对不等式(1)和(2)作了大量推广[2-15].笔者应用权函数,将给出一个带有最佳常数因子的半离散非齐次核的逆向Hilbert型不等式,同时给出它的等价式.
引理1 定义权系数及权函数
由(13)和(14)式,有K+η1+η2≥H(ε+1.令ε→0+,有K≥H与假设K<H矛盾.可知K确为(8)式最佳值.
注意到(8),(9)和(10)式等价,易知式(9)和(10)式的常数因子也必为最佳值.
[1] HARDY G H.Note on a Theorem of Hilbert Concerning Series of Positive Term[J].Proc.London Math.Soc.,1925,23(2):XLV-XLVI.
[2] 杨必成.一个半离散的Hilbert不等式[J].广东第二师范学院学报,2011,31(3):1-7.
[3] 杨必成.一个推广的非齐次核的Hilbert型积分不等式[J].吉林大学学报:理学版,2010,48(5):719-722.
[4] XUE Zi-tian,ZENG Zheng.A Hilbert-Type Integral Inequality Whose Kernel is a Homogeneous Form of Degree-3[J].J.Math.Anal.Appl.,2008,339:324-331.
[5] 曾 峥,谢子填.一个新的有最佳常数因子的Hilbert型积分不等式[J].华南师范大学学报:自然科学版,2010(3):31-33.
[6] ZENG Zheng,XIE Zi-tian.A Hilbert’s Inequality with a Best Constant Factor[J].Journal of Inequalities and Applications,2009,Article ID 820176,8Pages,doi:10.1155/2009/820176.
[7] ZENG Zheng,XIE Zi-tian.On a New Hilbert-Type Integral Inequality with the Integral in Whole Plane[J].Journal of Inequalities and Applications,2010,Article ID 256796,8Pages,2010.doi:10.1155/2010/256796.
[8] XIE Zi-tian,ZENG Zheng.A New Hilbert-Type Inequality with the Integral in Whole Plane[J].Kyungpook Mathematical Journal,2012,52:291-298.
[9] XIE Zi-tian.A New Reverse Hilbert-Type Inequality with a Best Constant Factor[J].J.Math.Anal.Appl.,2008,343:1 154-1 160.
[10] 谢子填,杨必成,曾 峥.一个新的实齐次核的Hilbert型积分不等式[J].吉林大学学报:理学版,2010,48(6):941-945.
[11] 谢子填,曾 峥.一个实齐次核的Hilbert型积分不等式及其等价形式[J].浙江大学学报:理学版,2011,38(3):266-270.
[12] 谢子填.一个实数齐次核的Hilbert型积分不等式[J].吉首大学学报:自然科学版,2011,32(4):26-30.
[13] 谢子填,曾 峥.一个新的-4μ齐次半离散Hilbert型不等式[J].吉首大学学报:自然科学版,2012,33(3):15-19.
[14] XIE Zi-tian,ZENG Zheng.On a Hilbert-Type Integral Inequality with the Homogeneous Kernel of Real Number-Degree and Its Operator Form[J].Advances and Applications in Mathematical Sciens,2011,10(5):481-490.
[15] XIE Zi-tian,ZENG Zheng.A New Hilbert-Type Inequality in Whole Plane with the Homogeneous Kernel of Degree 0[J].i-Manager’s Journal on Mathematics,2013,2(1):13-19.
[16] 匡继昌.常用不等式[M].第3版.济南:山东科技出版社,2004.
(责任编辑 向阳洁)
On a Half-Discrete Reverse Hilbert-Type Inequality with a Non-Homogeneous Kernel
XIE Zi-tian1,2,SUN Yu-feng1
(1.Shaoguan University,Shaoguan 512005,Guangdong China;2.School Mathematics and Information Sciences,Zhaoqing University,Zhaoqing 526061,Guangdong China)
By using the way of weight functions,a new half-discrete reverse Hilbert-type inequality is giver,with a non-homogeneous kernel and with a best constant factor.An equivalent form with a best constant factor is presented.
half-discrete;Hilbert-type inequality;Hölder’s inequality;equality form
O178
A
10.3969/j.issn.1007-2985.2013.05.004
1007-2985(2013)05-0011-05
2013-02-09
广东省自然科学基金资助项目(S2012010010069)
谢子填(1948-),男,广东肇庆人,广东肇庆学院数学与信息科学学院教授,主要从事解析不等式研究.