王 贝, 雷雨田
(1. 江苏教育学院 数学系, 南京 210013; 2. 南京师范大学 数学科学学院, 南京 210046)
经典的Hardy-Littlewood-Sobolev(HLS)不等式为[1]
(1)
1) 加权HLS不等式[2]:
(2)
2) Wolff型不等式[3]:
(3)
其中:Wβ,γ(f)是正可积函数f的Wolff位势:
Iα(f)是f的Riesz位势:
为研究式(2)的最佳常数, Lieb[4]考虑了泛函
在约束条件‖f‖r=‖g‖s=1下的极大化问题, 并证明了极大元是径向对称且单调下降的. 此时, Euler-Lagrange方程组为
(4)
Jin等[5]利用积分形式的移动平面法, 证明了方程组的正解是对称单调的; 随后, 他们利用关于正则性的lifting引理, 得到了正解的可积性[6]. 基于此, 文献[7-9]计算了正解的渐近估计.
特别地, 当α=β=0时, 式(4)退化为HLS不等式最佳常数问题对应的Euler-Lagrange方程组:
(5)
(6)
当α=2时, 式(6)即为Lane-Emden方程组:
(7)
其正解的存在性问题即为Lane-Emden猜想[10].
作为含有Riesz位势方程组(5)的自然推广, 考虑含有Wolff位势的方程组:
(8)
文献[11-12]分别得到了其正解的可积性和对称单调性. 在此基础上, 文献[13]得到了正解当x→∞时的衰减估计; 文献[14]将对称性和衰减估计推广到多个方程联立的方程组.
利用文献[15]的结果及衰减估计可以研究γ-Laplace方程正解的渐近行为[16-17], 利用文献[18]的结果可以研究k-Hessian方程解的整体性质.
本文结合HLS不等式和Wolff不等式, 给出一种新的Wolff型位势的积分估计, 并给出了比式(4)更一般的变分结果.
定理1设g≥0,g∈Lt(Rn). 记G(x)=Wβ,γ(g)(x), 则G∈Ls(Rn), 且
(9)
(10)
证明: 注意到HLS不等式(1)蕴含
‖Iβγ(g)‖p≤C‖g‖np/(n+pβγ).
此即式(9).
反之, 利用式(10)可知
证毕.
定理2设f,g≥0,f∈Lr(Rn),g∈Ls(Rn). 如果函数K(x,y)>0, 使得如下泛函有意义
且不等式E(f,g)≤C‖f‖r‖g‖s存在最佳常数C*, 则对应的最佳函数f,g满足:
(11)
经计算, 得
(12)
注意到E(f*,g*)=C*, 式(12)即为
类似地, 可得
运用变分法基本原理, 可得式(11). 证毕.
(13)
[1] Stein E M. Singular Integrals and Differentiability Properties of Function [M]. Princetion Math Series, Vol.30. Princetion: Princetion University Press, 1970.
[2] Stein E M, Weiss G. Fractional Integrals inn-Dimensional Euclidean Space [J]. J Math Mech, 1958, 7: 503-514.
[3] Hedberg L I, Wolff T. Thin Sets in Nonlinear Potential Theory [J]. Ann Inst Fourier (Grenobel), 1983, 33: 161-187.
[4] Lieb E. Sharp Constants in the Hardy-Littlewood-Sobolev and Related Inequalities [J]. Ann of Math, 1983, 118: 349-374.
[5] JIN Chao, LI Cong-ming. Symmetry of Solutions to Some Systems of Integral Equations [J]. Proc Amer Math Soc, 2006, 134: 1661-1670.
[6] JIN Chao, LI Cong-ming. Qualitative Analysis of Some Systems of Integral Equations [J]. Calc Var Partial Differential Equations, 2006, 26: 447-457.
[7] LI Cong-ming, Lim J. The Singularity Analysis of Solutions to Some Integral Equations [J]. Comm Pure Appl Anal, 2007, 6(2): 453-464.
[8] LEI Yu-tian, MA Chao. Asymptotic Behavior for Solutions of Some Integral Equations [J]. Comm Pure Appl Anal, 2011, 10: 193-207.
[9] LEI Yu-tian, LI Cong-ming, MA Chao. Asymptotic Radial Symmetry and Growth Estimates of Positive Solutions to Weighted Hardy-Littlewood-Sobolev System of Integral Equations [J]. Calculus of Variations and Partial Differential Equations, 2012, 45(1/2): 43-61.
[10] Souplet P. The Proof of the Lane-Emden Conjecture in 4 Space Dimensions [J]. Advances in Mathematics, 2009, 221(5): 1409-1427.
[11] MA Chao, CHEN Wen-xiong, LI Cong-min. Regularity of Solutions for an Integral System of Wolff Type [J]. Advances in Mathematics, 2011, 226(3): 2676-2699.
[12] CHEN Wen-xiong, LI Cong-ming. Radial Symmetry of Solutions for Some Integral Systems of Wolff Type [J]. Discrete Contin Dyn Syst, 2011, 30: 1083-1093.
[13] LEI Yu-tian. Decay Rates for Solutions of an Integral System of Wolff Type [J]. Potential Analysis, 2011, 35(4): 387-402.
[14] LEI Yu-tian, MA Chao. Radial Symmetry and Decay Rates of Positive Solutions of a Wolff Type Integral System [J]. Proc Amer Math Soc, 2012, 140(2): 541-551.
[15] Kilpelaiinen T, Maly J. The Wiener Test and Potential Estimates for Quasilinear Elliptic Equations [J]. Acta Math, 1994, 172(1): 137-161.
[16] LEI Yu-tian, LI Cong-ming, MA Chao. Decay Estimation for Positive Solutions of aγ-Laplace Equation [J]. Discrete Contin Dyn Syst, 2011, 30(2): 547-558.
[17] LEI Yu-tian, LI Cong-ming. Integrability and Asymptotics of Positive Solutions of aγ-Laplace System [J]. J Differential Equations, 2012, 252(3): 2739-2758.
[18] Phuc N, Verbitsky I. Quasilinear and Hessian Equations of Lane-Emden Type [J]. Ann of Math, 2008, 168: 859-914.