何平
目前的数学课堂教学以传授数学知识为主,并以为这是教育的唯一的、最高的目的。作为教师,我们恨不得把所有的数学知识都灌输到学生的脑子中;学生也恨不得把所有数学学科的知识一点不漏地贮存在自己的大脑中。至于这些数学知识有什么价值、作用,对未来的工作生活学习有没有帮助,教师和学生都是不会管的,认为掌握数学知识越多越好。其实数学课堂教学中传授知识只是教育的基本目标。除知识外,还有更崇高、更值得追求的目标。譬如说:如何激发学生的创新意识?如何去探索未知?如何动手操作?等等。我们的数学教学可以说什么都不缺——有知识、有课程、有作业、有考试,但唯独缺少灵性与个性。
什么是灵性与个性呢?第一,有知识不等于有灵性与个性,一个人可能学富五车,但他不一定是灵性之人,因为他完全可能千万次地重复他人的思想,自己去不善思考,不去探索研究,更不会发明。相反,像苏格拉底那样,逢人便说我只知道自己一无所知,倒可能最富灵性,因为他总想和别人理论、探究、辩论。知识关注的是现成答案、现成公式、现成事件的简单归纳,但灵性与个性关注的是未知世界,这就是知识与灵性、个性区别。第二,掌握了很多的实用技能也不等于有个性,一个人学会了电脑,学会了开车,但他却不一定富有个性,因为他有可能是被动地接受,而内心对这些却毫无兴趣,更谈不上能从中悟出灵感。真正有个性之人,应对自己从事的活动感兴趣,即使没有什么好处,自己也愿意去做,也仍然感到乐此不疲。因为他在做的过程中会体会到生活的愉快,人生的乐趣,还有什么比品尝生活的愉快和乐趣更接近个性呢?再回过头来对比一下我们的数学课堂教学,是对知识的过分追求,从而淹没了对探索的渴望。这样的数学教育,能是有灵性与个性的数学教育吗?要打造数学教育的个性与灵性,笔者认为应从以下几个方面做。
第一,制定差异目标,促使主体确认。现代教学论告诉我们,教学目标是教学过程中师生预期的教学效果,是一切教学活动的出发点和归宿,而且对教学活动起着明确的导向作用和激励作用,并为教学评价提供依据。因此要在课程标准的指导下,根据学生个体的情绪,兴趣,思维品质,能力等方面的差异,灵活制定教学目标,体现多元性和差异性。如在“列方程解应用题”时,我制定了以下三个基本目标;1.了解问题的结论,学会用一元一次方程解应用题;2.能用二元一次方程组解应用题;3.灵活运用多种方法解应用题。目标一是为学习有困难的学生准备的;目标二是中等以上学生都必须达到的基本要求;目标三是在此基础上,让学生解答一些本质特征不变,稍作变式引申或改变其本质特征变式题,以培养学生的思维能力和解题能力。这样学生可根据自己的个人的特点确认自己的学习目标,充分体现数学课程标准的教学理念:人人都能获得必需的数学知识,不同的学生在数学中得到不同的发展。
第二,扶持创新个体,促使自主参与。在教学实践中,由于学生对新内容的理解层次不同,常常会提出许多具有个性光彩的问题,教师若能及时抓住并有效地组织学生讨论,以这些极富创新精神的个体行动与情绪感染其他学生,使他们在思维的相互诱导和撞击中,闪现新亮点,产生新的飞跃,进而出现于教材、立足生活又高于新知识和生活的创新思维“火花”。如在教学三角形内角和定理时,首先可以让学生猜想这三个角和是多少度。学生很容易回答是180°。教师接着提问:那么大家想想看,为什么是180°?哪位同学给出验证方法。这是一转折点,教师可引导学生思考,其中就有几位同学想到剪下三角形的三个角,拼在一起,成为一个平角,体现了学生转化和创新的思想。
第三,拓展活动空间,促使自主完善。“活动是人类生命、能力、个性的形成与发展的本源”。在数学教学过程中,蕴含着许多自主活动的空间。在例题教学中,学生可根据自己理解问题的方式方法,寻求不同的解题思路和方法;在练习中,学生可根据自己对新知识掌握了解的情况,自主选择练习题的内容形式;在新知识应用过程中,可根据自己的理解与生活实例紧密联系起来,解决一些生活实际问题;在课外活动中有的需要引申与拓展,有的需要开阔视野;有的喜欢趣味数学,有的则喜欢竞赛天地。但只要我们根据学生的个体差异,深入挖掘适合学生个性发展的因素,积极地、适时地拓展学生的自主活动空间,为每个学生的个性发展创造条件,使每个学生都能按照自己的学习节奏自由自在地学习,就一定能促使学生在活动中不断完善,在充满灵性与个性的空间里身心健康发展。
第四,实施差异评价,促使学生自主整合,实施差异的评价就是针对每个孩子的学习潜能进行富有激励性、个性化的评价,让学生体会到教师对他们的关心和期望。既要善于发现好学生的潜在问题,更要尽可能地寻找到学有困难的学生的闪光点。帮助他们树立学好数学的信心,提高学习数学的兴趣,激发學习数学的潜能。使每个学生都有一种获得成功的愉悦感,真正把学习数学当做一种精神享受。
总之,数学教育中的灵性与个性是数学教育的本质灵魂。让我们共同努力,打造出充满灵性与个性的数学教育。