走近“正数和负数”

2008-10-15 10:53林伟杰
关键词:正整数正数负数

林伟杰

读者朋友,你现在已经是中学生了,祝贺你!今天,请林老师带你走近第二章第一节,亲密接触“正数和负数”.

首先,我们来认识什么是负数,为什么要学习负数.

我们在小学时所学过的数,如1,2,38,6.9等都是正数.哦,对了,0不是正数.这些正数和0在生活中发挥着重要的作用,但是,生活中只有这些数是远远不够的.不信?请看,小婷家8月份的收入是3 000元,支出是2 000元,若把它们分别记为3 000元和2 000元,就弄不清哪个是收入,哪个是支出了,但如果我们把收入记为正,那么与它具有相反意义的支出就记为负,这样,哪个是收入,哪个是支出,就一目了然了.由此可见,负数是由于实际生活的需要而产生的.负数是中国古代数学的最辉煌的成就之一.

其次,我们来看看怎样表示正数和负数.

正数有两种表示方法:一种是小学学过的表示法,如3,56,12.4,4/5等;另一种是在小学学过数的前面加上“+”号(读作“正”),如+8,+23,+6/25,+0.71等.“+”号可省略,如8和+8表示同一个正数.负数的表示方法是在正数的前面加上“-”号(读作“负”),如-2,-9,-2.6,-3/8等.注意:“-”号是不能省略的,因为它表示的是一种相反意义.例如,若把向南走100米记作+100米,那么向南走-100米表示与“向南走”相反意义的量,实际意义是“向北走”100米,而0米则表示“原地不动”.

对于正数和负数,我们不能简单地理解为:带“+”号的数就是正数,带“-”号的数就是负数.如+(-6)就不是正数,事实上,+(-6)=-6,故它是负数;又如-(-6)也不是负数,事实上,-(-6)=6,故它是正数.

第三,引入负数后,我们学过的数有哪些?

引入负数后,数这个大家族由于增加了新成员,所以范围变大了,扩大到了有理数.课本上说,整数和分数统称有理数,即有理数包括整数和分数.而整数又包括正整数、零和负整数,分数又包括正分数和负分数,故有理数包括正整数、零、负整数、正分数、负分数这五种数.这是有理数的一种分类方法.其实,它还有另一种分类方法,即有理数包括正有理数、负有理数和零,其中正有理数包括正整数、正分数;负有理数包括负整数、负分数.故不论怎样分类,有理数总是包括正整数、零、负整数、正分数、负分数这五种数.

第四,引入负数后,0的意义有变化吗?

我们知道,0是非常特殊的数,如0加任何一个数还是这个数;0乘任何一个数都得0;0不能做除数;等等.我们还知道,在小学时,“0”表示“没有”,它是最小的数,但引入负数后,0不再是最小的数了,它既不是正数,也不是负数,而是正数与负数的分界,是唯一的中性数.

请读者判断以下两个说法是否正确,想想为什么:

(1)有理数中最小的数是0;

(2)非正数中没有最大的数.

实际上,(1)、(2)两个说法都错了.(1)错在仍习惯于在小学中所学的数中思考问题,事实上,引入负数后,0不再是最小的数了;(2)出错原因有两点:一是受小学中所学的数和有理数中都没有最大的数的影响,而认为非正数中也没有最大的数,这主要是没有弄清非正数是指哪些数;二是虽弄清了非正数包括零和负数,但由于受小学时形成的“零是最小的数”这一结论的影响而不敢相信“零是最大的非正数”.

读者朋友,你答对了吗?

猜你喜欢
正整数正数负数
最强大脑
学好乘方四注意
内容丰富的数字0
历经艰辛的“负数”
非负数|a|、a2帮你轻松解题
对一道IMO题的再研究
正数与负数(小相声)
勾股数杂谈