《全等三角形》测试题

2008-09-27 09:18何春华
关键词:全等三角形角是对顶角

何春华

错误是我们为追求进步所付出的代价.

——艾尔夫雷德•怀特海(19世纪、20世纪英国数学家)

一、填空题(每小题4分,共32分)

1. 如图1,△ACB≌△DEF,其中A与D、C与E是对应顶点,则CB的对应边是__,∠ABC的对应角是__.

2. 如图2,沿直线AC对折,△ABC与△ADC重合,则△ABC≌__,AB的对应边是__,AC的对应边是__,∠BCA的对应角是__.

3. 已知△ABC≌△A′B′C′,∠A=60°,∠B=70°,AB=20 cm,则∠C′=__,A′B′=__cm.

4. 已知△ABC≌△A′B′C′,△A′B′C′≌△A″B″C″,则△ABC与△A″B″C″的关系是__.

5. 如图3,已知△ABC≌△DEF,∠B=45°,∠D=70°,则∠ACB=__.

6. 已知△ABC≌△A′B′C′,且△A′B′C′的面积为12.如果BC=4,那么BC边上的高为__.

7. 如图4,在△ABC中,∠CAB=140°.将△ABC绕点A顺时针方向旋转25°后得到△ADE,则∠CAD=__.

8. 如图5,△ABC≌△DEC,∠A∶∠BCA∶∠ABC=3∶10∶5,则∠D=__,∠BCD=__.

二、选择题(每小题4分,共32分)

9. 下列各组图形中是全等图形的是().

10. 有下列说法:①所有的等边三角形都全等;②两个全等三角形的最大边是对应边;③两个全等三角形的对应角相等;④面积相等的两个三角形全等.其中正确的有().

A. 1个 B. 2个 C. 3个 D. 4个

11. 如图6,已知△AEC≌△AFB,AE与AF、AC与AB是对应边,则一定和∠EAC相等的角是().

A. ∠EAB B. ∠CAB C. ∠FAB D. ∠ACE

12. 如图7,△ABC≌△CDA,AB=4,BC=5,AC=6,则AD的长为().

A. 4 B. 5 C. 6 D. 不确定

13. 如图8,AC与BD相交于点O,△AOB≌△COD.若把△AOB绕O点旋转180°,则与点B重合的是().

A. 点DB. 点CC. 点AD. 不能确定

14. 如图9,△ABE≌△ACD,∠B=50°,∠AEC=120°,则∠DAC为().

A. 120°B. 70°C. 60°D. 50°

15. 如图10,△ABC与△DBE是全等三角形,即△ABC≌△DBE,那么图中相等的角(对顶角除外)有().

A. 3对B. 4对C. 6对D. 8对

16. 如图11,在△ABC中,点D、E分别是边AC、BC上的点.若△ADB≌△EDB≌△EDC,则∠C为().

A. 15° B. 20° C. 25° D. 30°

三、解答题

17. (6分)图12是用10根火柴棒摆成的一个三角形.你能否只移动其中的3根,摆出一对全等三角形?

18. (6分)如图13,已知△ADE≌△BCF,AD=6 cm,CD=5 cm,求BD的长.

19. (8分)如图14,∠ACB=90°,△ABC≌△DFC.请问:DE与AB互相垂直吗?

20. (10分)如图15,已知△OA′B′是△OAB绕点O沿逆时针方向旋转60°得到的,那么△OA′B′与△OAB是什么关系?若∠AOB=40°,∠B=50°,则∠A′OB′有多大?∠A′与∠AOB′呢?

四、拓展题

21. (12分)如图16,△ABC≌△ADE,且∠CAD=10°,∠B=∠D=25°,∠EAB=120°.试求∠DFB和∠DGB的大小.

22. (14分)如图17,在正方形ABCD中,E是AD的中点,F是BA延长线上的一点,AF=1/2AB.

(1)指出图中线段BE与DF之间的长度关系和位置关系.

(2)在图17中,可以通过平移、翻折、旋转中的哪一种方法,使△ABE变到△ADF的位置?

猜你喜欢
全等三角形角是对顶角
余角、补角与对顶角
“相交线”检测题
探析三角函数教学的新视角
初中全等三角形复习课教学案例
怎么教学生“全等三角形”
“相交线”检测题
理解邻补角和对顶角
翻转课堂教学模式在数学教学中的尝试
丽丽的年龄
“相交线”检测题