袁 磊
摘要:借助递归神经网络强大的动态映射能力,提出了反映世界优秀男子跳高运动员身体素质与专项成绩相关关系的递归神经网络模型。该模型克服了多元回归模型和灰色模型的缺点,在不需要事先确定模型数学表达形式的条件下,更为准确地映射出运动员身体素质训练水平与专项成绩之间的函数关系。并且运用建立起的神经网络模型,绘制了素质训练水平与专项成绩之间的关系曲线。从而为跳高运动员进行科学训练提供了理论依据。
关键词:身体素质;专项成绩;跳高;递归神经网络
中图分类号:G804.2文献标识码:A文章编号:1007-3612(2008)02-0202-03
随着我国体育事业的蓬勃开展,特别是2008年奥运会的成功申办,大幅提高各项体育运动水平已成为体育管理部门、教练员和运动员关注的焦点。在以往的奥运会中,我国的跳高运动员的成绩并不理想,与世界一流水平还存在一定差距。为了缩小差距,更快地提高我国跳高运动员的专项成绩,争取在2008年奥运会上取得较大进步,准确建立起反映运动员专项成绩与身体素质相关关系的数学模型是必要的也是必须的。为了更准确地建立起映射专项成绩与身体素质函数关系的数学模型,本文利用递归神经网络强大的动态映射能力,在不需要事先确定模型数学表达形式的条件下,通过递归神经网络对训练样本的学习,建立了世界优秀男子跳高运动员的神经网络模型。
1研究对象与方法
1.1研究对象通过查阅有关文献资料,收集世界前15名男子跳高运动员的专项成绩与身体素质训练水平的历史数据(表1)。根据这些数据,分析优秀男子跳高运动员的专项成绩与身体素质训练指标之间的相关关系,建立起映射身体素质训练水平与专项成绩相关关系的递归神经网络模型。
1.2研究方法人工神经网络(Artificial Neural Network-ANN)是为模仿人脑的工作方式而设计的一种机器,是一种具有分布式存储、平行处理和自适应学习的信息处理系统。自从20世纪50年代Rosenblatt首次将单层感知器应用于模式分类学习以来,已经有了30多年的研究历史。近年来,随着神经网络理论水平的发展和应用领域的拓宽,神经网络强大的映射能力已得到人们的公认,并在许多应用领域中取得了丰硕的成果。其中,递归神经网络(Recurrent Neural Network,RNN)因其具有动态映射能力而受到青睐。80年代末,国际上一些神经网络专家,如Jordan、Pineda、Williams和Elman等提出了递归神经网络。递归神经网络的本质特征是在神经元之间既具有内部的反馈连接又有前馈连接。从系统观点看,它是一个反馈动力系统。在计算过程中它体现出动态特性,比BP前馈神经网络具有更强的动态行为和计算能力。本文采用递归神经网络来建立数学模型可以拟合跳高运动员的专项成绩与身体素质训练之间的任何一种函数关系,真正反映出它们的内在特征,从而克服多元回归模型和灰色模型的不足。目前,国际上有10种左右的递归神经网络模型,应用最广泛的是Elman网络,其结构见图1。它具有输入层、隐层、输出层以及反馈层,反馈层用来保存隐层单元前一时刻的输出状态。Elman型递归神经元网络的特点是隐藏层的输出通过反馈层的延迟、存储,自联到隐藏层的输入,这种自联方式使其对历史状态的数据具有敏感性,内部反馈网络的加入增加了网络本身处理动态信息的能力,有利于动态过程的建模。
图1Elman递归神经网络当递归神经网络的结构确定以后,便需进行神经网络的学习,在递归神经网络的学习算法中,最基本也是最重要的学习算法为动态反向传播算法(Dynamic Back Propagation)。该学习算法由正向传播和反向传播组成。在正向传播过程中,输入信号从输入层通过作用函数,逐层向隐含层、输出层以及反馈层传播。如果在输出层得不到期望的输出,则转入反向传播,将误差信号沿原来的连接通路返回,通过修改各层神经元的连接权值,使得输出误差信号最小。此学习过程不断地反复进行,直到输出误差信号小于某一给定数值,这样便获得了映射输入与输出信号的一组连接权值,得到训练好的神经网络模型。
2运动员的Elman递归神经网络模型
2.1身体素质训练指标的选取
依据15名跳高运动员7项身体素质训练指标与专项成绩的历史数据,进行身体素质训练指标与专项成绩之间的相关分析和关联分析,其相关系数和关联度见表2。从表2可以看出,100m跑、立定三级跳远、助跑手摸高、4-6步助跑高、后抛铅球、高抓杠铃和深蹲杠铃这7项身体素质训练与专项成绩的相关系数和关联度均较高。经专家评定,确认这7项素质训练指标与跳高运动员的专项成绩关系密切。
2.2神经网络模型Elman神经网络模型的建立一般可分为2个步骤:步骤1为确定神经网络模型的结构,步骤2为采用动态反向传播算法对训练样本进行学习,获得最优的连接权值。
2.2.1神经网络结构的确定选取神经网络的输入神经元数为7,分别对应7项身体素质训练指标;输出神经元数为1,代表专项成绩。神经网络的隐层数取1层,隐层神经元数目为10个。隐含层神经元的传递函数采用Sigmoid函数,输出层神经元的传递函数采用线性函数。
2.2神经网络的学习以7项素质训练指标与专项成绩对应的15组历史数据作为神经网络的训练样本,15组训练样本的数据见表3。
将以上训练样本进行归一化处理,变换成之间的数据。采用Levenberg-Marquardt动态反向传播算法对15组训练样本进行学习,从而获得最优的神经网络权值。这里,我们运用Matlab 6.5软件中的神经网络开发工具,方便和简单地实现了Elman神经网络的学习。整个学习过程耗时0.3 s(计算机的为,内存为),动态反向传播算法的学习过程曲线见图2。学习之后的神经网络模型,即神经网络的连接权值见表4,它映射出运动员素质训练与专项成绩之间的函数关系。
2.3神经网络模型的拟合精度将7项素质训练指标的数据代入神经网络模型中,获得专项成绩的预测值,计算结果见表5。采用多元线性回归模型,通过利用最小二乘法来拟合身体素质训练指标与专项成绩之间的15组数据,获得的数学模型为:
利用该数学公式,同样计算出运动员的专项成绩,计算结果见表5。
比较两种数学模型的拟合精度。从表5可以看出,神经网络模型的拟合精度要高于多元线性回归模型,即递归神经网络模型更好地映射出运动员身体素质训练水平与专项成绩之间的函数关系,为运动员训练提供了更为合理的数学模型。
2.4神经网络模型的应用在建立了运动员神经网络模型之后,便可根据运动员的实际情况,设定运动员身体素质训练水平的变化范围。并利用递归神经网络模型,计算出在该训练水平范围内的专项成绩。假定运动员1的深蹲杠铃成绩在之间变化,而其它素质训练指标取表1中的数据,运动员1的跳高专项成绩与深蹲杠铃成绩的相关曲线见图3。
同样,可绘制其它素质训练指标与专项成绩之间的关系曲线。利用这些曲线,教练员和运动员可以分析出素质训练对运动员专项成绩的影响程度。最后依据此分析结果来科学安排运动员的训练计划,为运动员创造优异成绩提供理论依据。
3结论
利用递归神经网络强大的动态映射能力,本文建立起世界优秀跳高运动员身体素质训练水平与专项成绩相关关系的递归神经网络模型,该模型克服了多元回归模型和灰色模型的缺点,不需要事先确定数学模型的数学表达形式,更为客观地反映了跳高运动员的身体素质训练水平与专项成绩之间的函数关系,从而获得了更高的拟合精度。教练员和运动员利用该神经网络模型,可以更为准确地掌握运动员专项成绩的发展趋势,从而安排出更为科学的运动员训练计划。
参考文献:
[1] 范秦海,周越,周健.跳高运动员专项身体素质与专项成绩相关关系的研究[J].中国体育科技,2002,38(2):35-38.
[2] 刘嘉津.运用GM(1,h)模型规划田径训练的量化方法[J].西安体育学院学报,2003,20(6):57-58.
[3] 张乃尧,阎平凡.神经网络与模糊控制[M].北京:清华大学出版社,1998:53-150.
[4] 楼顺天,陈生潭,雷虎民.MATLAB 5.X程序设计语言[M].西安:西安电子科技大学出版社,2001.
“本文中所涉及到的图表、注解、公式等内容请以PDF格式阅读原文”