关于三角形中线长的一个不等式

2024-11-11 00:00吴从军邹守文
中学数学研究 2024年11期

文[1]给出了一个涉及三角形三边长的恒等式:

设△ABC的三边长为a,b,c,三个内角为A,B,C,r,R分别为内切圆和外接圆半径,求证:

b+c2bccosA+c+a2cacosB+a+b2abcosC=5+2rR ①

本文首先给出①式的一个证明,在此基础上得到一个关于中线长的不等式.

证明:令l=a2+b2+c2,则

b2+c2bccosA+c2+a2cacosB+a2+b2abcosC=∑cycb2+c2bc·b2+c2-a22bc=∑cycl-a2l-2a22b2c2

=∑cyca2l2-3a2l+2a42a2b2c2

=a2+b2+c23-3a2+b2+c2a4+b4+c4+2a6+b6+c62a2b2c2

=∑cyca6+3∑cyca2b2a2+b2+6a2b2c2-3∑cyca6-3∑cyca2b2a2+b2+2∑cyca62a2b2c2=3.

又因为∑cyccosA=1+rR,所以

b+c2bccosA+c+a2cacosB+a+b2abcosC=∑cycb2+c2+2bcbccosA=∑cycb2+c22bccosA+2∑cosA

=3+21+rR=5+2rR.

推论 在△ABC中,有∑cycb2+c2bccosA=3.②

下面给出一个三角形中线长不等式.

命题 在△ABC中,有

54-r22R2≤∑ma 2bccosA≤218-3rR.③

引理1 在△ABC中,有∑a2=2(s2-4Rr-r2);∑bc=s2+4Rr+r2;abc=4Rrs.

引理2 在△ABC中,有∑a2cosAbc=s2-4Rr-r2R2-3 ④.

证明:由引理1有

∑a2cosAbc=∑a2bc·b2+c2-a22bc

=∑a4b2+c2-a22a2b2c2=∑a4b2+c2-∑a62a2b2c2

=∑a4b2+c2-∑a2∑a4-∑b2c2-3a2b2c22a2b2c2

=∑a2b2a2+b2-∑a2∑a4-∑b2c2-3a2b2c22a2b2c2

=∑a2∑b2c2-∑a2∑a4-∑b2c2-6a2b2c22a2b2c2

=∑a22∑b2c2-∑a4-6a2b2c22a2b2c2

=∑a24∑b2c2-∑a22〗-6a2b2c22a2b2c2

=∑a24∑bc2-8abc∑a-∑a22〗-6a2b2c22a2b2c2

=∑a24∑bc2-8abc∑a-∑a22〗2a2b2c2-3

=∑a24s2+4Rr+r22-64Rrs2-4s2-4Rr-r22〗32R2r2s2-3

=∑a24s24Rr+r2-16Rrs2〗8R2r2s2-3

=∑a22R2-3=s2-4Rr-r2R2-3.

命题的证明:由②④两式,结合三角形中线长公式,知

∑ma 2bccosA = ∑142b2 + 2c2-a2bccosA

=12∑b2+c2bccosA-14∑a2cosAbc

=32-14s2-4Rr-r2R2-3=94-s2-4Rr-r24R2.

由Gerretsen不等式16Rr-5r2≤s2≤4R2+4Rr+3r2,知∑ma 2bccosA = 94-s2-4Rr-r24R2≤94-16Rr-5r2-4Rr-r24R2=94-12Rr-6r24R2=94-3rR+3r22R2

≤94-3rR+38=218-3rR;∑ma 2bccosA = 94-s2-4Rr-r24R2≥94-4R2 + 4Rr + 3r2-4Rr-r24R2=94-4R2+2r24R2=94-1-r22R2=54-r22R2.

所以54-r22R2≤∑ma 2bccosA≤218-3rR.

参考文献

[1] Nguyen Viet Hung. BONUS PROBLEMS.B129.Crux Mathematicorum, Vol.49(7), September 2023.