1.引言
设a,b,c,R,r,s,△ABC分别为△ABC的三边长、外接圆半径、内切圆半径、半周长与面积,∑表示循环求和.文[1]介绍了由D.M.Milosevic提出的如下不等式:
∑ab+csin2A2≥12(1-r2R)≥38①.
文[2]给出了不等式的①的加强:
∑ab+csin2A2≥(1-r2R2)②.
最近文[3]中对milosevic不等式做了进一步研究,给出了①的一个逆向不等式和②的一个加强.
1-3r2R+3r28R2+r34R3≤∑ab+csin2A2≤1-21r16R+r28R2③.
文[4]将不等式(3)改进为更简洁的形式:
1-3R2r+r22R2≤∑ab+csin2A2≤1-4r3R+r26R2④.
文[5]通过Gerrestsen不等式 ③的加强:
1-3r2R+r22R2≤∑ab+csin2A2≤1-4r3R+r26R2⑤.
本文利用Gerrestsen不等式的加强不等式,即杨雪枝不等式等到新的定理1以及运用引理4得到一个强于⑤式的定理2:
定理1 在△ABC中,有1-3r2R+3r24R2-r34R3-r42R4≤∑ab+csin2A2≤1-9r8R-r28R2-r34R3.
等号当且仅当△ABC为正三角形时成立.
定理2 在△ABC中,有1-3r2R+3r28R2+r34R3≤∑ab+csin2A2≤1-5r22R2.
等号当且仅当△ABC为正三角形时成立.
2.引理
引理1[5] 在△ABC中,有∑ab + csin2A2 = 1-3r2R + r2R·6R r + 4r2s2 + 2Rr + r2.
引理2[6] (Gerrestsen)在△ABC中,有16Rr-5r2≤s2≤4R2+4Rr+3r2.
引理3[6] (杨学枝不等式)在△ABC中,有16Rr-5r2+(R-2r)r2R-r≤s2≤4R2+4Rr+3r2-(R-2r)r2R-r.
证明:引理3是引理2的加强式.只需证(R-2r)r2R-r≥0,由R≥2r,显然成立.
为了方便计算,我们引理3转化成:16R2r-20Rr2+3r3R-r≤s2≤4R3-2Rr2-r3R-r.
引理4[6] 在△ABC中,有27r2≤s2≤27R24.
证明:由海伦公式,△2=116(a+b+c)(b+c-a)(c+a-b)(a+b-c)=116·2s(2s-2a)(2s-b)(2s-2c)=s(s-a)(s-b)(s-c),又由△=12(a+b+c)r=sr,结合三元不等式可得(sr)2=s(s-a)(s-b)(s-c)≤s·[(s-a)+(s-b)+(s-c)3]3=s427,整理得27r2≤s2,引理左端得证.又由s=a+b+c2=R(sinA+sinB+sinC),sinA+sinB+sinC=4cosA2cosB2·cosC2,cosA2cosB2cosC2≤332,则可得s2≤27R24.引理4得证.
3.结论的证明
由引理1和引理2右端可知,以及欧拉公式R≥2r,
6Rr+4r2s2+2Rr+r2≥6Rr+4r24R3-2Rr2-r3R-r+2Rr+r2=6R2r-2Rr2-4r34R3+2R2r-3Rr2-2r3≥6R2r-2Rr2-4r34R3=3r2R-r22R2-r3R3.
代入下式得
∑ab+csin2A2=1-3r2R+r2R·6Rr+4r2s2+2Rr+r2≥1-3r2R+r2R·(3r2R-r22R2-r3R3)
=1-3r2R+3r24R2-r34R3-r42R4.
则定理1的左边得证.现证右边.
6Rr+4r2s2+2Rr+r2≤6Rr+4r216R2r-20Rr2+3r3R-r+2Rr+r2=6R2-2Rr-4r218R2-21Rr+2r2,
由欧拉公式R≥2r,18R2-21Rr+2r2-8R3=10R2-21Rr+2r2=(R-2r)(10R-r)≥0,即18R-21Rr+2r2≥8R2,所以上式6R2-2Rr-4r218R2-21Rr+2r2≤6R2-2Rr-4r28R2=34-r4R-r22R2.代入下式得∑ab+csin2A2=1-3r2R+r2R·6Rr+4r2s2+2Rr+r2≤1-3r2R+r2R·(34-r4R-r32R3)
=1-9r8R-r28R2-r34R3.
由上,定理1得证.
现证明定理2,由引理1和引理4,以及欧拉公式R≥2r,可得:
6Rr+4r2s2+2Rr+r2≥6Rr+4r227R24+2Rr+r2=24Rr+16r227R2+8Rr+4r2≥24Rr+16r232R2=3r4R+r22R2,可得∑ab+csin2A2=1-3r2R+r2R·6Rr+4r2s2+2Rr+r2≥1-3r2R+r2R·(3r4R+r22R2)=1-3r2R+3r28R2+r34R3.
即定理2的左端得证.现证右边.
6Rr+4r2s2+2Rr+r2≤6Rr+4r227r2+2Rr+r2=6R+4r28r+2R=3-80r2R+28r≤3-80r16R=3-5rR,可得
∑ab+csin2A2=1-3r2R+r2R·6Rr+4r2s2+2Rr+r2≤1-3r2R+r2R(3-5rR)=1-5r22R2.
则定理2得证.
注:定理2是⑤式的加强.只需证分别证右端1-3r2R+r22R2与1-3r2R+3r28R2+r34R3,左端1-4r3R+r26R2与1-5r22R2的大小.
证明:由欧拉公式R≥2r,右端有
1-3r2R+r22R2-(1-3r2R+3r28R2+r34R3)=r28R2-r34R3=r2(R-2r)8R3≥0,即1-3r2R+r22R2≥1-3r2R+3r28R2+r34R3.
左端:1-4r3R+r26R2-(1-5r22R2)=8r(2r-R)6R2≤0,有1-4r3R+r26R2≥1-5r22R2.则证明了定理2强于⑤式.
现证明定理1式与定理2的强弱.只需证右端 1-3r2R+3r24R2-r34R3-r42R4与 1-3r2R+3r28R2+r34R3,左端1-9r8R-r28R2-r34R3与1-5r22R2的大小.
证明:由欧拉公式R≥2r,右端有1-3r2R+3r24R2-r34R3-r42R4-(1-3r2R+3r28R2+r34R3)=r2[R(3R-2r)-2r(R-2r)]8R4≥r2(3R-2r)8R3≥0,即1-3r2R+3r24R2-r34R3-r42R4≥1-3r2R+3r28R2+r34R3.
左端:1-9r8R-r28R2-r34R3-(1-5r22R2)=r(2r-R)(9R-r)8R3≤0,即1-9r8R-r28R2-r34R3≤1-5r22R2.则定理2的右端强于定理1的右端端,而定理2的左端弱于定理1的左端.
参考文献
[1] Mitrinovic D S,Pecaric JE,Volenec V,陈计.专著《几何不等式新进展》的补遗(Ⅰ)(英文)[J].宁波大学学报(理工版),1991(02):79-145.
[2]姜卫东.关于Milosevic不等式的加强[J].中学数学教学,2019(02):71.
[3]郭要红.关于Milosevic不等式的再研讨[J].数学通报,2020,59(02):60-61.
[4]何灯,王少光.Milosevic不等式的再探讨[J].中学数学研究,2021(04):31-32.
[5]李建潮.关于Milosevic不等式的再研究[J].数学通报,2022,61(03):54-55+60.
[6]苏岳祥,胡孝兰,杨续亮.三角形半周长不等式的研讨[J].数学通讯,2020(16):62-66.