巨噬细胞极化在炎症性肠病中的研究进展

2024-09-20 00:00:00张梦婷项镜蓉朱濛昕曹凯磊石通国奚沁华
胃肠病学 2024年1期
关键词:巨噬细胞炎症性肠病极化

摘要 炎症性肠病(IBD)是一种慢性炎症性胃肠道疾病,包括克罗恩病和溃疡性结肠炎。IBD可能是由遗传易感因素、环境因素和肠道微生物群改变之间复杂的相互作用所引起,导致先天性和适应性免疫反应失调。最近研究发现巨噬细胞在肠道炎症反应中具有可塑性,不仅可以调节炎症的发生,而且可以促进组织修复和愈合。IBD的发展过程中存在巨噬细胞极化异常,促炎M1巨噬细胞与抗炎M2巨噬细胞表型和功能之间的平衡受到细胞内外刺激的调节,因此这一过程有望成为新的潜在的治疗靶点。本文就巨噬细胞极化在IBD中的研究进展作一综述。

关键词 炎症性肠病; 巨噬细胞; 极化; 治疗

Progress of Research on Macrophage Polarization in Inflammatory Bowel Disease ZHANG Mengting, XIANG Jingrong, ZHU Mengxin, CAO Kailei, SHI Tongguo, XI Qinhua." Department of Gastroenterology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province (215006)

Correspondence to: XI Qinhua, Email: xqhxqhxqh@126.com

Abstract Inflammatory bowel disease (IBD) is a chronic inflammatory disease of the gastrointestinal tract that includes Crohn's disease and ulcerative colitis. IBD may be caused by complex interactions between genetic susceptibility, environmental factors, and alterations in the gut microbiota, resulting in dysregulated innate and adaptive immune responses. Recent studies have identified macrophages in the intestinal inflammatory response as having the plasticity to not only regulate inflammation, but also to promote tissue repair and healing. As aberrant macrophage polarization occurs during the development of IBD, the balance between the phenotype and function of pro⁃inflammatory M1 and anti⁃inflammatory M2 macrophages is regulated by extracellular and intracellular stimuli, and this process is therefore expected to be a potential target for new therapeutic approaches. This article reviewed the progress of research on macrophage polarization in IBD.

Key words Inflammatory Bowel Disease; Macrophages; Polarization; Therapy

炎症性肠病(inflammatory bowel disease, IBD)是免疫介导的复杂的消化道慢性炎症性疾病,包括克罗恩病(Crohn's disease, CD)和溃疡性结肠炎(ulcerative colitis, UC),以临床缓解期与复发期交替出现为特点,通常伴有狭窄、脓肿和瘘管等并发症,使患者的生命质量严重下降[1]。最新研究发现IBD作为复杂、严重的慢性公共卫生问题,其发病率和流行率在世界范围内不断上升,已成为显著的全球医疗负担[2]。越来越多的研究提示IBD是由于基因、免疫系统、肠道菌群和其他环境因素之间的相互作用而引起的,但目前对IBD的确切发病机制仍知之甚少,这阻碍了IBD的临床诊治[3]。因此,研究IBD的发病机制并评估新的抗炎策略非常重要。

目前,针对IBD的治疗以抗炎药物(糖皮质激素、氨基水杨酸盐)、免疫抑制剂(硫唑嘌呤、巯嘌呤、甲氨蝶呤)和生物制剂[抗肿瘤坏死因子(TNF)类药物、其他抗白细胞介素(IL)类药物]为主,但临床疗效不甚理想,仍有许多患者因治疗失败、复发或不良反应而需要替代疗法[4]。巨噬细胞作为先天性免疫系统的核心组成,可以清除入侵的病原体,触发适应性免疫应答,并在肠道慢性炎症微环境中受肠道微生物或炎症因子等的刺激而极化为相反的表型状态[5]。随着免疫治疗领域的不断发展,巨噬细胞在健康和疾病中的作用引起了越来越多的关注,其可塑性和伤口愈合能力有望成为治疗IBD的潜在新疗法的有吸引力的靶点[6]。本文从巨噬细胞极化、巨噬细胞在IBD中的作用和影响以及与巨噬细胞极化的相关靶点等方面作一综述,以期为靶向巨噬细胞在IBD中治疗提供新的方向和策略。

一、巨噬细胞分型及其极化

巨噬细胞极化是巨噬细胞对特定组织中的微环境刺激和信号产生特异性表型和功能性反应的过程,肠道中的巨噬细胞可分为经典活化型M1和替代活化型M2[7]。当感染或炎症严重时,巨噬细胞首先表现为M1表型,释放TNF⁃α、IL⁃1β、IL⁃12和IL⁃23来对抗刺激。M1巨噬细胞的持续作用会导致组织损伤,而M2巨噬细胞分泌大量IL⁃10和转化生长因子(TGF)⁃β来抑制炎症,参与组织修复、重塑、血管生成和维持体内平衡。此外,在肠道炎症消退、组织修复和恢复正常肠道稳态过程中,凋亡的中性粒细胞和上皮细胞会诱导巨噬细胞从M1向M2转换[7⁃8]。

1. 巨噬细胞的起源:随着小鼠模型技术的发展,研究证实大多数组织驻留巨噬细胞来自胚胎发育期间卵黄囊中的红细胞⁃髓系祖细胞,可根据生态位信号调节功能和分化,并具有自我更新能力[9⁃10]。如在肠道稳态中,外肌层组织内的巨噬细胞可与控制肠道分泌和蠕动的肠神经元和肌间神经元相互作用,而在固有层中,巨噬细胞向肠道干细胞提供信号,产生杯状细胞、Paneth细胞和肠上皮细胞[8]。值得一提的是,肠道巨噬细胞群是胎源性巨噬细胞,在出生后的三个月内,血液中的循环单核细胞被招募进来,通过一系列中间产物进行局部分化,逐渐取代胎源性巨噬细胞群,驱动这一过程的关键是微生物群,并持续了整个成年期,以维持正常的肠道巨噬细胞库[11]。

2. 巨噬细胞的表型:M1/M2命名法最初是在20年前由Mills等提出,虽然已建立了大量巨噬细胞极化相关的体外模型,但在体内由于多种刺激导致激活的M1/M2巨噬细胞混合在一起,很难区分M1与M2[5,12]。近来有研究通过系统生物学方法对巨噬细胞亚型进行功能表型分析,证实静息M0可极化为M1、M2a、M2b、M2c和M2d,根据信号蛋白和表达基因图谱将巨噬细胞划分为炎症型(M1和M2b)和伤口愈合型(M2a、M2c和M2d)[13]。

3. 巨噬细胞的功能:M1巨噬细胞通常由Th1细胞因子[如干扰素(IFN)⁃γ和TNF⁃α]、细菌脂多糖或Toll样受体(TLR)激动剂识别诱导,并能产生促炎因子(如IL⁃12、IL⁃23和IL⁃1β),促进Th1和Th17免疫应答,加重上皮细胞损伤[14⁃16]。M2a巨噬细胞可被IL⁃4和IL⁃13诱导,具有促进Th细胞活化、抑制炎症、促进组织修复和促进血管生成等功能[17⁃18]。M2b巨噬细胞可由脂多糖、免疫复合物、TLR激动剂或IL⁃1受体配体刺激诱导,可通过免疫复合物交联Fcγ受体,促进Th2免疫,并分泌高水平IL⁃10[19]。M2c巨噬细胞可被免疫复合物、糖皮质激素、前列腺素和IL⁃10激活,通过渗出、细胞外基质(ECM)重塑和血管生成来促进组织修复[20]。M2d巨噬细胞可通过多种机制极化,包括与癌细胞腹水共培养或暴露于IL⁃6、白血病抑制因子或嘌呤核苷腺苷,具有刺激血管生成、癌症转移的作用[21⁃22]。目前巨噬细胞活化状态改变的原因尚不清楚,可能是由于单核细胞的招募及其对局部变化的反应或M1与M2巨噬细胞之间的复极化,或两者的结合。由于肠道巨噬细胞的异质性增加,巨噬细胞亚群在IBD中的作用有待进一步研究。

4. 影响巨噬细胞极化的因素

①集落刺激因子1(CSF1):CSF1是典型的巨噬细胞生长因子,被认为是髓系前体细胞向单核系分化,并分化为巨噬细胞的主要驱动因素,黏膜和肌层巨噬细胞的发育和生存均依赖于CSF1受体信号。有研究证实抗CSF1受体抗体治疗可大量消耗巨噬细胞,影响Paneth细胞分化,导致LGR5+肠干细胞减少,从而影响肠上皮细胞分化[22⁃23]。IL⁃34被称为是CSF1的“孪生”细胞因子,两者有共同的受体,即CSF1受体,且激活方式相似,启动相同的信号通路。在IBD中,IL⁃34与CSF1受体在相同区域共表达,IL⁃34缺乏会加重急性结肠炎和伤口愈合阶段小鼠的结肠炎[24⁃25]。更有体外数据显示,IL⁃34可促进循环单核细胞向M2巨噬细胞分化,而CSF1主要促进M1巨噬细胞分化[26⁃27]。此外,CSF1和IL⁃34激活的巨噬细胞在免疫反应中表现出不同的巨噬细胞极化潜能。CSF1分化的M1巨噬细胞较IL⁃34分化的M1巨噬细胞更能促进初始T细胞向Th1分化[26]。

②IL⁃10受体:IL⁃10受体信号转导对小鼠和人类肠道巨噬细胞的调节表型具有重要作用,IL⁃10受体会激活非受体酪氨酸激酶JAK1和TYK2,诱导下游信号通路,包括STAT3磷酸化和核转位[28]。IL⁃10受体缺陷的巨噬细胞表现出明显的促炎特征,包括NOS2、IL⁃23a、CCL5、CCR7等的升高,可导致严重的结肠炎[29]。巨噬细胞特异性敲低IL⁃10下游转录因子STAT3的小鼠也会发生自发性结肠炎[30]。Ackermann等[31]通过给予极早发性IBD小鼠腹腔注射野生型巨噬细胞,再消耗内源性高炎症巨噬细胞,进行为期6周的造血干细胞基因疗法,结果显示这种疗法能显著减轻结肠炎症状,且与肠巨噬细胞中IL⁃10信号通路的基因校正密切相关。IL⁃10还能通过诱导哺乳动物雷帕霉素靶蛋白(mTOR)抑制剂DDIT4来抑制mTOR活性,阻断脂多糖诱导的巨噬细胞代谢重组,从而抑制葡萄糖摄取和糖酵解,促进氧化磷酸化。在小鼠结肠炎模型和IBD患者中,IL⁃10信号通路的缺失导致巨噬细胞中受损线粒体的积累,NLRP3炎症小体的激活失调和IL⁃1β的产生[32]。可见巨噬细胞中的IL⁃10受体信号转导对于预防炎症具有重要作用。

③TGF⁃β:TGF⁃β也是影响肠巨噬细胞分化的关键因素,包括产生IL⁃10、整合素、基质金属蛋白酶(MMP)⁃2等[33]。TGF⁃β和IL⁃10可诱导肠巨噬细胞表达髓样细胞触发受体(TREM⁃1)下调,而TREM⁃1是一种强有力的放大炎症的受体[34]。有研究表明TGFβ⁃TGFβ受体轴通过抑制结肠巨噬细胞表达单核细胞CCL8来调节巨噬细胞的转换[33]。

④趋化因子CX3CL1:CX3CL1⁃CX3CR1轴在巨噬细胞的分化和功能中发挥重要作用。CX3CR1high肠道巨噬细胞可通过分泌IL⁃10和IL⁃1β来调节T细胞的活性和功能,并能通过其上皮树突感知并摄取来自肠腔的细菌抗原[35]。在肠道稳态平衡中,肠道微生物群可抑制负载抗原的CX3CR1high肠道巨噬细胞向肠系膜淋巴结迁移,从而抑制T细胞的抗原呈递,有效维持对共生细菌的耐受性。而当肠道微生物群受到干扰或处于慢性结肠炎状态时,CX3CR1high的巨噬细胞会分化为促炎效应细胞,并获得向淋巴结迁移和向淋巴细胞呈递抗原的能力[8]。有研究[36]利用恶唑酮诱导的小鼠结肠炎模型来探讨CX3CL1⁃CX3CR1轴对炎症结肠血管内皮单核细胞的作用,发现炎症结肠血管中CD115单核细胞表达了高水平的炎症介质,并证明抗CX3CL1单克隆抗体破坏了CX3CL1的依赖性黏附,可有效抑制CD115单核细胞对静脉内皮的黏附,同时抗CX3CL1单克隆抗体也可减轻T细胞转移性结肠炎。

⑤肠道微生物:肠道微生物是肠道巨噬细胞募集和分化的关键介质。在缺乏微生物群的小鼠或用抗菌药物急性耗竭微生物群的小鼠中,单核细胞来源的和组织驻留巨噬细胞数量均减少[37⁃38]。微生物群的调节作用主要取决于细菌细胞成分的直接刺激和细菌代谢物的作用[39]。近来有研究证实核受体Nr4a1和微生物群可以调节巨噬细胞在肠黏膜中的血管周围定位,并使肠道巨噬细胞成熟以进行修复,肠道微生物会影响肠道CX3CR1巨噬细胞的分布和形态,肠道微生物的消耗会损害肠道巨噬细胞的更新[40]。Kim等[41]通过小鼠遗传和类器官共培养实验表明肠道微生物群通过调节CD206+巨噬细胞和间充质生态位促进干细胞分化。微生物群可以通过与饮食之间的相互作用间接影响巨噬细胞极化,膳食纤维经肠道微生物酵解形成短链脂肪酸,如丁酸盐。丁酸盐可抑制组蛋白脱乙酰酶活性,进而抑制肠道巨噬细胞产生促炎细胞因子,如一氧化氮(NO)、IL⁃6和IL⁃12,最终发挥抗炎作用[42]。Liang等[43]通过体内和体外研究证实丁酸盐能促进M2巨噬细胞极化,使CD206和精氨酸酶⁃1(Arg1)表达升高,且丁酸盐诱导的M2巨噬细胞的转移促进了葡聚糖硫酸钠(DSS)损伤后的杯状细胞产生和黏液修复。

二、IBD与巨噬细胞极化

巨噬细胞对于维持肠道稳态至关重要,循环的单核细胞不断被招募至肠道并分化为成熟的巨噬细胞,以补充大多数常驻巨噬细胞。这些循环巨噬细胞高表达CD206和CD163,具有抗炎巨噬细胞的功能,如分泌抗炎细胞因子IL⁃10和TGF⁃β[44]。然而在肠道炎症过程中,单核细胞向成熟肠巨噬细胞的终末分化过程被破坏,在被CCR2控制的趋化因子(如CCL2、CCL7和CCL8)作用下进入炎症组织,向促炎M1巨噬细胞分化[45⁃46]。与此同时,细胞因子如IFN⁃γ和粒细胞⁃巨噬细胞集落刺激因子(GM⁃CSF)将进一步增强巨噬细胞的促炎性质[47⁃48]。此外,效应T细胞的产物(如IL⁃22)可驱动肠上皮细胞的促炎反应,包括中性粒细胞和单核细胞趋化剂的释放,从而再次加强促炎细胞的招募[15]。值得注意的是,有研究证实结肠炎期间M1巨噬细胞占多数,但M2巨噬细胞也存在,如持续存在于肠道组织基底膜下层,以对抗炎症并促进愈合[44,49]。有研究[31]发现,通过转移或腹腔注射骨髓来源的M2巨噬细胞,以增加其在结肠中的比例,可改善小鼠结肠炎。因此靶向巨噬细胞极化的平衡在IBD治疗中具有重要意义。

三、IBD中的巨噬细胞极化相关靶点

D⁃甘露糖是葡萄糖的C2差向异构体,通过葡萄糖转运蛋白(GLUT)的继发性主动转运进入细胞内部,进而被己糖激酶磷酸化为6⁃磷酸甘露糖。有研究发现甘露糖通过下调IL⁃1β基因表达来抑制脂多糖诱导的巨噬细胞活化,从而改善小鼠结肠炎。这种作用可能是由抑制葡萄糖代谢和抑制琥珀酸盐介导的低氧诱导因子(HIF)⁃1α活化而引起的[50]。

琥珀酸受体1(SUCNR1)是代谢物琥珀酸酯的受体,可抑制M2巨噬细胞极化。有研究发现CD患者血清琥珀酸含量增多,肠组织中SUCNR1表达增强,且SUCNR1与M0巨噬细胞的标志物CD206、M1巨噬细胞的标志物CD86共定位,SUCNR1缺陷小鼠的腹膜巨噬细胞中促炎细胞因子(IL⁃1β、IL⁃6和TNF⁃α)表达明显降低,从而使SUCNR1缺陷小鼠免于发生结肠炎[51]。

磷酸二酯酶4(PDE4)属于细胞内非受体酶,可特异性催化多种细胞(包括炎症细胞)中的环磷酸腺苷(cAMP)分解为失活的腺苷一磷酸(AMP),PDE4抑制引起的细胞内cAMP水平升高已被证明可下调促炎细胞因子(如TNF⁃α、IFN⁃γ、IL⁃12、IL⁃17和IL⁃23)的释放,并上调抗炎细胞因子IL⁃10的产生[52]。近来有研究证明PDE4抑制剂阿普斯特对巨噬细胞极化有明显影响,可通过抑制NF⁃κB转录活性和NF⁃κB依赖性基因来下调炎症反应,从而诱导M1与M2表型的转换[6,53]。

单核细胞趋化蛋白⁃1诱导蛋白1(MCPIP1)主要表达于巨噬细胞相关器官,如胸腺、脾脏、肺脏、肠道和脂肪组织。在TLR配体、IL⁃1β和MCP⁃1的作用下,MCPIP1可作为内切酶降解数种mRNA,如IL⁃1β、IL⁃6[54]。最近有研究[55]发现巨噬细胞特异性MCPIP1缺乏会使巨噬细胞极化为M1样表型,阻止巨噬细胞成熟,并以活化转录因子3(ATF3)⁃AP1S2依赖性方式加剧肠道炎症,MCPIP1、ATF3和AP1S2在活动性IBD患者的炎症黏膜中高表达,阻断ATF3或AP1S2能显著抑制CD14+ M1型巨噬细胞极化和促炎细胞因子的产生,并增强M2巨噬细胞的极化。

F⁃box蛋白38(FBXO38)在组织和细胞中广泛表达,最新研究[56]通过体外实验发现FBXO38通过MAPK和IRF4信号上调M2样基因的表达促进M2样巨噬细胞极化,并增强巨噬细胞的免疫抑制功能,但不影响M1样巨噬细胞极化,从而对DSS诱导的结肠炎具有保护作用。

Yes相关蛋白(Yes⁃associated protein, YAP)是Hippo通路的关键组成部分,尽管YAP可促进上皮再生和缓解IBD,巨噬细胞中YAP缺失可通过增强M2巨噬细胞极化,抑制M1巨噬细胞产生IL⁃6,改变肠道菌群稳态,从而缓解化学诱导的IBD[57⁃58]。

甲基转移酶样3(METTL3)是结合共底物S⁃腺苷蛋氨酸(SAM)的催化亚基,METTL3和METTL4形成异二聚体复合物催化N6⁃甲基腺苷(m6A)修饰[59]。METTL3在各种病理生理过程中发挥重要作用,包括细胞周期、细胞凋亡、先天性免疫和炎症等[60]。有研究[61]发现将小鼠巨噬细胞极化为M1后,METTL3特异性上调,且通过siRNA转染敲除METTL3可明显抑制巨噬细胞向M1极化,但会促进巨噬细胞向M2极化。

因此,通过干预巨噬细胞极化的靶点来抑制M1巨噬细胞极化、促进M2巨噬细胞极化或诱导M1巨噬细胞向M2巨噬细胞转变,或许是未来IBD治疗的新思路之一。

四、总结与展望

综上所述,巨噬细胞极化状态可能是决定肠道炎症和疾病消退或进展的关键因素,调节M1/M2巨噬细胞平衡可能是未来治疗IBD的潜在方向。在一定条件下,M1向M2的转换介导了巨噬细胞在协调炎症发生以及促进愈合和修复中的双重作用。因此更好了解肠道巨噬细胞的发育和功能有助于提出新的治疗策略,进而改善IBD患者的预后。

参考文献

[ 1 ] TORRES J, MEHANDRU S, COLOMBEL J F, et al. Crohn's disease[J]. Lancet, 2017, 389 (10080): 1741⁃1755.

[ 2 ] NG S C, SHI H Y, HAMIDI N, et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population⁃based studies[J]. Lancet, 2017, 390 (10114): 2769⁃2778.

[ 3 ] SARTOR R B. Mechanisms of disease: pathogenesis of Crohn's disease and ulcerative colitis[J]. Nat Clin Pract Gastroenterol Hepatol, 2006, 3 (7): 390⁃407.

[ 4 ] ZAIATZ BITTENCOURT V, JONES F, DOHERTY G, et al. Targeting immune cell metabolism in the treatment of inflammatory bowel disease[J]. Inflamm Bowel Dis, 2021, 27 (10): 1684⁃1693.

[ 5 ] MILLS C D, KINCAID K, ALT J M, et al. M⁃1/M⁃2 macrophages and the Th1/Th2 paradigm[J]. J Immunol, 2000, 164 (12): 6166⁃6173.

[ 6 ] MOHR A, BESSER M, BROICHHAUSEN S, et al. The influence of apremilast⁃induced macrophage polarization on intestinal wound healing[J]. J Clin Med, 2023, 12 (10): 3359.

[ 7 ] SICA A, MANTOVANI A. Macrophage plasticity and polarization: in vivo veritas[J]. J Clin Invest, 2012, 122 (3): 787⁃795.

[ 8 ] SAEZ A, HERRERO⁃FERNANDEZ B, GOMEZ⁃BRIS R, et al. Pathophysiology of inflammatory bowel disease: innate immune system[J]. Int J Mol Sci, 2023, 24 (2): 1526.

[ 9 ] GOMEZ PERDIGUERO E, KLAPPROTH K, SCHULZ C, et al. Tissue⁃resident macrophages originate from yolk⁃sac⁃derived erythro⁃myeloid progenitors[J]. Nature, 2015, 518 (7540): 547⁃551.

[10] GUILLIAMS M, SCOTT C L. Does niche competition determine the origin of tissue⁃resident macrophages? [J]. Nat Rev Immunol, 2017, 17 (7): 451⁃460.

[11] BAIN C C, BRAVO⁃BLAS A, SCOTT C L, et al. Constant replenishment from circulating monocytes maintains the macrophage pool in the intestine of adult mice[J]. Nat Immunol, 2014, 15 (10): 929⁃937.

[12] MARTINEZ F O, GORDON S. The M1 and M2 para⁃digm of macrophage activation: time for reassessment[J]. F1000Prime Rep, 2014, 6: 13.

[13] ANDERS C B, LAWTON T M W, SMITH H L, et al. Use of integrated metabolomics, transcriptomics, and signal protein profile to characterize the effector function and associated metabotype of polarized macrophage pheno⁃types[J]. J Leukoc Biol, 2022, 111 (3): 667⁃693.

[14] GORDON S. Alternative activation of macrophages[J]. Nat Rev Immunol, 2003, 3 (1): 23⁃35.

[15] BERNSHTEIN B, CURATO C, IOANNOU M, et al. IL⁃23⁃producing IL⁃10Rα⁃deficient gut macrophages elicit an IL⁃22⁃driven proinflammatory epithelial cell response[J]. Sci Immunol, 2019, 4 (36): eaau6571.

[16] FRIEDRICH M, POHIN M, POWRIE F. Cytokine networks in the pathophysiology of inflammatory bowel disease[J]. Immunity, 2019, 50 (4): 992⁃1006.

[17] EDWARDS J P, ZHANG X, FRAUWIRTH K A, et al. Biochemical and functional characterization of three activated macrophage populations[J]. J Leukoc Biol, 2006, 80 (6): 1298⁃1307.

[18] JETTEN N, VERBRUGGEN S, GIJBELS M J, et al. Anti⁃inflammatory M2, but not pro⁃inflammatory M1 macrophages promote angiogenesis in vivo[J]. Angiogenesis, 2014, 17 (1): 109⁃118.

[19] AMBARUS C A, SANTEGOETS K C, VAN BON L, et al. Soluble immune complexes shift the TLR⁃induced cytokine production of distinct polarized human macrophage subsets towards IL⁃10[J]. PLoS One, 2012, 7 (4): e35994.

[20] LURIER E B, DALTON D, DAMPIER W, et al. Trans⁃criptome analysis of IL⁃10⁃stimulated (M2c) macrophages by next⁃generation sequencing[J]. Immunobiology, 2017, 222 (7): 847⁃856.

[21] SHAPOURI⁃MOGHADDAM A, MOHAMMADIAN S, VAZINI H, et al. Macrophage plasticity, polarization, and function in health and disease[J]. J Cell Physiol, 2018, 233 (9): 6425⁃6440.

[22] DULUC D, DELNESTE Y, TAN F, et al. Tumor⁃associated leukemia inhibitory factor and IL⁃6 skew monocyte differentiation into tumor⁃associated macrophage⁃like cells[J]. Blood, 2007, 110 (13): 4319⁃4330.

[23] SEHGAL A, DONALDSON D S, PRIDANS C, et al. The role of CSF1R⁃dependent macrophages in control of the intestinal stem⁃cell niche[J]. Nat Commun, 2018, 9 (1): 1272.

[24] LIU Z X, CHEN W J, WANG Y, et al. Interleukin⁃34 deficiency aggravates development of colitis and colitis⁃associated cancer in mice[J]. World J Gastroenterol, 2022, 28 (47): 6752⁃6768.

[25] ZWICKER S, BUREIK D, BOSMA M, et al. Receptor⁃type protein⁃tyrosine phosphatase ζ and colony stimulat⁃ing factor⁃1 receptor in the intestine: cellular expression and cytokine⁃ and chemokine responses by interleukin⁃34 and colony stimulating factor⁃1[J]. PLoS One, 2016, 11 (11): e0167324.

[26] BOULAKIRBA S, PFEIFER A, MHAIDLY R, et al. IL⁃34 and CSF⁃1 display an equivalent macrophage differentiation ability but a different polarization potential[J]. Sci Rep, 2018, 8 (1): 256.

[27] MUÑOZ⁃GARCIA J, COCHONNEAU D, TÉLÉTCHÉA S, et al. The twin cytokines interleukin⁃34 and CSF⁃1: masterful conductors of macrophage homeostasis[J]. Thera⁃nostics, 2021, 11 (4): 1568⁃1593.

[28] SHOUVAL D S, OUAHED J, BISWAS A, et al. Inter⁃leukin 10 receptor signaling: master regulator of intestinal mucosal homeostasis in mice and humans[J]. Adv Immunol, 2014, 122: 177⁃210.

[29] ZIGMOND E, BERNSHTEIN B, FRIEDLANDER G, et al. Macrophage⁃restricted interleukin⁃10 receptor defi⁃ciency, but not IL⁃10 deficiency, causes severe sponta⁃neous colitis[J]. Immunity, 2014, 40 (5): 720⁃733.

[30] TAKEDA K, CLAUSEN B E, KAISHO T, et al. Enhanced Th1 activity and development of chronic enterocolitis in mice devoid of Stat3 in macrophages and neutrophils[J]. Immunity, 1999, 10 (1): 39⁃49.

[31] ACKERMANN M, MUCCI A, MCCABE A, et al. Restored macrophage function ameliorates disease pathophysiology in a mouse model for IL10 receptor⁃deficient very early onset inflammatory bowel disease[J]. J Crohns Colitis, 2021, 15 (9): 1588⁃1595.

[32] IP W K E, HOSHI N, SHOUVAL D S, et al. Anti⁃inflammatory effect of IL⁃10 mediated by metabolic reprogramming of macrophages[J]. Science, 2017, 356 (6337): 513⁃519.

[33] SCHRIDDE A, BAIN C C, MAYER J U, et al. Tissue⁃specific differentiation of colonic macrophages requires TGFβ receptor⁃mediated signaling[J]. Mucosal Immunol, 2017, 10 (6): 1387⁃1399.

[34] SCHENK M, BOUCHON A, BIRRER S, et al. Macrophages expressing triggering receptor expressed on myeloid cells⁃1 are underrepresented in the human intes⁃tine[J]. J Immunol, 2005, 174 (1): 517⁃524.

[35] MEDINA⁃CONTRERAS O, GEEM D, LAUR O, et al. CX3CR1 regulates intestinal macrophage homeostasis, bacterial translocation, and colitogenic Th17 responses in mice[J]. J Clin Invest, 2011, 121 (12): 4787⁃4795.

[36] KUBOI Y, NISHIMURA M, IKEDA W, et al. Blockade of the fractalkine⁃CX3CR1 axis ameliorates experimental colitis by dislodging venous crawling monocytes[J]. Int Immunol, 2019, 31 (5): 287⁃302.

[37] SHAW T N, HOUSTON S A, WEMYSS K, et al. Tissue⁃resident macrophages in the intestine are long lived and defined by Tim⁃4 and CD4 expression[J]. J Exp Med, 2018, 215 (6): 1507⁃1518.

[38] CHEN Q, NAIR S, RUEDL C. Microbiota regulates the turnover kinetics of gut macrophages in health and inflam⁃mation[J]. Life Sci Alliance, 2021, 5 (1): e202101178.

[39] LAVELLE A, SOKOL H. Gut microbiota⁃derived metabolites as key actors in inflammatory bowel disease[J]. Nat Rev Gastroenterol Hepatol, 2020, 17 (4): 223⁃237.

[40] HONDA M, SUREWAARD B G J, WATANABE M, et al. Perivascular localization of macrophages in the intestinal mucosa is regulated by Nr4a1 and the microbiome[J]. Nat Commun, 2020, 11 (1): 1329.

[41] KIM J E, LI B, FEI L, et al. Gut microbiota promotes stem cell differentiation through macrophage and mesenchymal niches in early postnatal development[J]. Immunity, 2022, 55 (12): 2300⁃2317. e6.

[42] CHANG P V, HAO L, OFFERMANNS S, et al. The microbial metabolite butyrate regulates intestinal macro⁃phage function via histone deacetylase inhibition[J]. Proc Natl Acad Sci U S A, 2014, 111 (6): 2247⁃2252.

[43] LIANG L, LIU L, ZHOU W, et al. Gut microbiota⁃derived butyrate regulates gut mucus barrier repair by activating the macrophage/WNT/ERK signaling pathway[J]. Clin Sci (Lond), 2022, 136 (4): 291⁃307.

[44] ISIDRO R A, APPLEYARD C B. Colonic macrophage polarization in homeostasis, inflammation, and cancer[J]. Am J Physiol Gastrointest Liver Physiol, 2016, 311 (1): G59⁃G73.

[45] YIP J L K, BALASURIYA G K, SPENCER S J, et al. The role of intestinal macrophages in gastrointestinal homeo⁃stasis: heterogeneity and implications in disease[J]. Cell Mol Gastroenterol Hepatol, 2021, 12 (5): 1701⁃1718.

[46] BERNARDO D, MARIN A C, FERNÁNDEZ⁃TOMÉ S, et al. Human intestinal pro⁃inflammatory CD11chighCCR2+

CX3CR1+ macrophages, but not their tolerogenic CD11c⁃CCR2⁃CX3CR1⁃ counterparts, are expanded in inflammatory bowel disease[J]. Mucosal Immunol, 2018, 11 (4): 1114⁃1126.

[47] NAKANISHI Y, SATO T, TAKAHASHI K, et al. IFN⁃γ⁃dependent epigenetic regulation instructs colitogenic monocyte/macrophage lineage differentiation in vivo[J]. Mucosal Immunol, 2018, 11 (3): 871⁃880.

[48] CASTRO⁃DOPICO T, FLEMING A, DENNISON T W, et al. GM⁃CSF calibrates macrophage defense and wound healing programs during intestinal infection and inflamma⁃tion[J]. Cell Rep, 2020, 32 (1): 107857.

[49] BAIN C C, MOWAT A M. Macrophages in intestinal homeostasis and inflammation[J]. Immunol Rev, 2014, 260 (1): 102⁃117.

[50] TORRETTA S, SCAGLIOLA A, RICCI L, et al. D⁃mannose suppresses macrophage IL⁃1β production[J]. Nat Commun, 2020, 11 (1): 6343.

[51] MACIAS⁃CEJA D C, ORTIZ⁃MASIÁ D, SALVADOR P, et al. Succinate receptor mediates intestinal inflammation and fibrosis[J]. Mucosal Immunol, 2019, 12 (1): 178⁃187.

[52] SAKKAS L I, MAVROPOULOS A, BOGDANOS D P. Phosphodiesterase 4 inhibitors in immune⁃mediated diseases: mode of action, clinical applications, current and future perspectives[J]. Curr Med Chem, 2017, 24 (28): 3054⁃3067.

[53] LI H, FAN C, FENG C, et al. Inhibition of phospho⁃diesterase⁃4 attenuates murine ulcerative colitis through interference with mucosal immunity[J]. Br J Pharmacol, 2019, 176 (13): 2209⁃2226.

[54] UEHATA T, AKIRA S. mRNA degradation by the endoribonuclease Regnase⁃1/ZC3H12a/MCPIP⁃1[J]. Biochim Biophys Acta, 2013, 1829 (6⁃7): 708⁃713.

[55] LU H, ZHANG C, WU W, et al. MCPIP1 restrains mucosal inflammation by orchestrating the intestinal monocyte to macrophage maturation via an ATF3⁃AP1S2 axis[J]. Gut, 2023, 72 (5): 882⁃895.

[56] ZHENG X, JIANG Q, HAN M, et al. FBXO38 regulates macrophage polarization to control the development of cancer and colitis[J]. Cell Mol Immunol, 2023, 20 (11): 1367⁃1378.

[57] TANIGUCHI K, WU L W, GRIVENNIKOV S I, et al. A gp130⁃Src⁃YAP module links inflammation to epithelial regeneration[J]. Nature, 2015, 519 (7541): 57⁃62.

[58] ZHOU X, LI W, WANG S, et al. YAP aggravates inflammatory bowel disease by regulating M1/M2 macro⁃phage polarization and gut microbial homeostasis[J]. Cell Rep, 2019, 27 (4): 1176⁃1189. e5.

[59] WANG X, FENG J, XUE Y, et al. Structural basis of N6⁃adenosine methylation by the METTL3⁃METTL14 complex[J]. Nature, 2016, 534 (7608): 575⁃578.

[60] LIU S, ZHUO L, WANG J, et al. METTL3 plays multiple functions in biological processes[J]. Am J Cancer Res, 2020, 10 (6): 1631⁃1646.

[61] LIU Y, LIU Z, TANG H, et al. The N6⁃methyladenosine (m6A)⁃forming enzyme METTL3 facilitates M1 macrophage polarization through the methylation of STAT1 mRNA[J]. Am J Physiol Cell Physiol, 2019, 317 (4): C762⁃C775.

(本文编辑:袁春英)

猜你喜欢
巨噬细胞炎症性肠病极化
认知能力、技术进步与就业极化
CD47与胃癌相关性的研究进展
抑瘤素M在心肌再生中的功能机理
双频带隔板极化器
电子测试(2017年15期)2017-12-18 07:18:51
肾纤维化的细胞和分子基础
血清抗体检测在炎症性肠病中的临床应用研究
益生菌治疗炎症性肠病的临床疗效分析
360例炎症性肠病及缺血性肠炎临床与病理诊断分析
免疫抑制剂在炎症性肠病治疗中的应用
上海医药(2016年1期)2016-02-22 23:23:36
基于PWM控制的新型极化电源设计与实现
电源技术(2015年1期)2015-08-22 11:16:18