炎性小体在胶质瘤中的研究进展

2024-07-18 00:00:00檀艳丽李响李梓汝于佳
河北大学学报(自然科学版) 2024年4期
关键词:焦亡小体胶质瘤

DOI:10.3969/j.issn.10001565.2024.04.007

摘要:炎性小体是由凋亡相关斑点样蛋白(apoptosis-associated speckle-like protein,ASC)、半胱天冬酶-1(caspase-1)和细胞中的模式识别受体(pattern recognition receptors,PRR)组成的一种多聚蛋白复合物.炎性小体在肿瘤的发生过程中具有重要作用,包括对肿瘤生物学行为、细胞焦亡及免疫的调控,靶向炎性小体可为肿瘤的治疗及预后改善提供新的思路.胶质瘤是中枢神经系统中恶性程度高、预后差的肿瘤,本文对炎性小体的组成、激活机制及其在胶质瘤中的作用进行了综述.

关键词:炎性小体;胶质瘤;细胞焦亡;免疫;IL-1β

中图分类号:R739.4文献标志码:A文章编号:10001565(2024)04039009

Research development of inflammasome in glioma

TAN Yanli1,2, LI Xiang3, LI Zirui1, YU Jia1

(1.School of Basic Medical Sciences,Hebei University, Baoding 071000,China;

2.Hebei Key Laboratory of Precise Diagnosis and Treatment of Glioma,Baoding 071000,China;

3. School of Clinical Medicine,Hebei University, Baoding 071000,China)

Abstract: Inflammasome is composed of apoptosis-associated speckle-like protein (ASC), caspase-1 and pattern recognition receptors (PRR). Inflammasome plays an important role in the process of tumorigenesis, including the regulation of tumor biological behavior, pyroptosis and immunity. Targeting inflammasome may provide new ideas for tumor treatment and prognosis improvement. Gliomas are highly malignant brain tumors with poor prognosis in the central nervous system. This article reviews the composition, activation mechanism and the role of inflammasome in gliomas.

Key words: inflammasome; glioma; pyroptosis; immunotherapy; IL-1β

胶质瘤是中枢神经系统最常见的恶性肿瘤,尽管临床综合治疗有一定疗效,但疗效不理想,预后差.胶质母细胞瘤(glioblastoma,GBM)是世界卫生组织标准的4级胶质瘤,恶性程度高,GBM的中位生存时间仅为12~16个月[1]. 先天性免疫系统是宿主防御的第一道防线,也是机体抵抗肿瘤的第一道屏障,其免疫应答依赖于模式识别受体靶向识别内源性病原体.炎性小体在肿瘤微环境中的积累有利于肿瘤细胞增殖、侵袭和转移,促进了肿瘤的发生发展.炎性小体的组装是经典途径导致细胞焦亡的关键因素.细胞焦亡是一种程序性死亡方式,按照以往的认知既可抑制肿瘤细胞生长,又可以促进颅内肿瘤免疫微环境中形成合适的生存条件,刺激肿瘤的生长,但与细胞焦亡相关因子刺激和抑制肿瘤发展的双重作用机制还需进一步研究[2].研究证实,炎性小体与肿瘤的发生与进展密切相关,近年来,越来越多关于炎性小体与胶质瘤的研究被报道.本文

收稿日期:20240304;修回日期:20240318

基金项目:国家自然科学基金资助项目(82172660);国家级大学生创新创业训练计划项目(202310075012);河北省高等学校科学技术研究项目(ZD2021308)

第一作者:檀艳丽(1973—),女,河北大学教授,博士生导师,主要从事肿瘤分子病理学研究.E-mail:tanyanli5536@126.com

就炎性小体在胶质瘤中的作用及机制进行综述,并探讨其作为肿瘤潜在治疗靶点的应用价值.

1炎性小体概述

炎性小体由 Tschopp研究组在2002年首次提出,最初被命名为caspase活化复合物[3],由凋亡相关斑点样蛋白 (apoptosis-asociated speckle-like protein,ASC)、半胱天冬酶-1(caspase-1)与感受器蛋白共同组成.炎性小体与多种生理和病理过程有关 ,如抗菌防御、肿瘤免疫等.炎性小体分为经典炎性小体和非经典炎性小体2类.非经典炎性小体是由人类pro-caspase-4/5与脂多糖(lipopolysacharide,LPS)构成的大分子蛋白复合物[4].经典炎性小体是由衔接蛋白ASC、pro-caspase-1 和感受器蛋白通过热蛋白结构域 (pyrindomain,PYD)或半胱天冬酶募集结构域 (caspase recruitment domain,CARD)结合在一起,形成的一种多聚体蛋白复合物.目前非经典炎性小体研究较少,本文主要关注经典炎性小体.

经典各型炎性小体的结构与组装即有共同特征也存在不同特点. 经典炎性小体组成的共同点是感受器蛋白大多富含亮氨酸的重复序列,且中央有核苷酸结合结构域,而不同点是组装炎性小体的结构域 PYD 和 CARD 的差别.NLRP1组装炎性小体的结构域为PYD和CARD,NLRP3、NLRP6、NLRP12组装炎性小体的结构域仅为PYD,此类炎性小体则需要 ASC衔接. NLRC4炎性小体有 CARD 结构域但无 PYD 结构域,不需要ASC接头募集即可激活[5] .明确各种炎性小体的结构与组装对于研究炎性小体的激活尤为关键.

经典炎性小体按照感受器蛋白的不同分为NLR (nucleotide-binding domain and leucine-rich repeat-containing)家族和PYHIN(pyrin and HIN domain-containing protein)家族[6].NLR蛋白家族成员均含有核苷酸结合寡聚化结构域,多数成员有1个N末端介导蛋白-蛋白相互作用的结构域和1个C末端富含亮氨酸的串联重复序列结构域,根据N末端结构域PYD或CARD的不同,该家族进一步分为NLRP或NLRC受体[7].PYHIN 家族构成的炎性小体成员相对研究较少,主要成员有IFI16、AIM2[8],其特点是除了N末端PYD结构域,C末端还有一段HIN-200 结构域.AIM2受体最近被确认为细胞质双链DNA感应蛋白[9],能通过使 caspase-1活化从而连接 ASC组装成AIM2炎性小体.

2炎性小体的激活机制

经典炎性小体的活化首先是激活炎性小体受体分子.具有模式识别受体的免疫细胞通过识别损伤相关分子模式(damage associated molecular pattern,DAMP)和病原相关分子模式(pathogen-associated molecular pattern,PAMP)[10],导致炎性小体复合物的组装和寡聚化.随后形成寡聚物并招募衔接蛋白ASC,之后ASC募集无活性的caspase-1前体,使其裂解和活化,无活性的前IL-1β和原IL-18被活化的caspase-1剪切为成熟的形式并释放[11-13],同时活性caspase-1继续剪切gasdermin D(GSDMD)蛋白为GSDMD-N,游离的GSDMD-N在膜中聚集成孔并诱导焦亡[14].非经典炎性小体的激活途径是由caspase-4/5/11直接感知细胞内 LPS,随后组装形成大分子复合物,caspase-4/5/11通过剪切 GSDMD,从而实现细胞焦亡.

目前研究最为广泛的NLRP3炎性小体的激活模式主要有:

1)离子作用模式

离子作用包括K+外排、Cl-外排和Ca2+信号传导. K+外排通过K+通道TWIK2进行,是激活NLRP3炎性小体的必要步骤[15],另外有研究指出CATH-2作为第2个信号激活LPS进而激活巨噬细胞中的NLRP3炎性小体,导致ASC寡聚化以及caspase-1活化,最终导致IL-1β成熟和分泌,这种激活过程由K+外排介导[16].

Murakami等[17]研究发现,过量或持续的Ca2+摄取导致线粒体损伤,线粒体活性氧(mtROS)产生增加,线粒体通透性发生变化,最终线粒体破裂,将mtROS和线粒体DNA(mtDNA)释放到细胞质中,证实NLRP3炎性小体被Ca2+动员导致线粒体损伤而激活.肠上皮细胞中的机械门控阳离子通道PIEZO1引起Ca2+内流,致使线粒体功能异常,进而NLRP3炎性小体被激活,肠道炎症发生[18].

在炎性小体的激活机制中Cl-的作用也被关注.PIM-1激酶抑制能够阻断巨噬细胞线粒体ROS/Cl-外排信号传导方式,从而抑制NLRP3炎性小体活化[19].Green等[20]的进一步研究发现,依赖NLRP3的ASC寡聚化是依赖Cl-外排的、动态的和可逆的.

2)细胞器作用模式

ROS氧化线粒体,并导致线粒体DNA释放,释放的线粒体DNA可以继续作为DAMP促进NLRP3炎性小体活化[21].An等[22]首次证明IQ基序中的GTP酶激活蛋白1(IQ motif-containing GTPase-activating protein 1,IQGAP1)促进ROS的产生,导致线粒体DNA释放到细胞质中,同时DNA传感器cGAS-STING被启动,促进NLRP3炎性小体的产生,从而诱导内皮细胞焦亡形成动脉粥样硬化.

Yang等[23]指出,醌型多溴二苯醚代谢物可引起线粒体功能障碍和ROS释放,介导溶酶体损伤和K+ 外排,通过经典和非经典途径触发炎性小体激活.阿匹莫德(apilimod) 作为一种溶酶体干扰物,以溶酶体依赖的方式触发NLRP3炎性小体激活[24].另外,Neuwirt等[25]研究发现,酪氨酸激酶抑制剂伊马替尼引起溶酶体肿胀和损伤,伴有K+ 外排,进而激活了NLRP3炎性小体.因此细胞器的功能障碍在炎性小体激活中发挥了重要作用.

3)ROS作用模式

许多物质被证明可以作用于ROS对NLRP3炎性小体的激活.例如正己烷代谢的毒性产物3,2-己二酮通过线粒体自噬依赖性ROS的产生触发NLRP3炎性小体的激活[26].有研究指出诺卡酮可以通过抑制ROS触发的NLRP3激活来减轻哮喘气道炎症,并且可能是治疗哮喘的潜在药物[27].高糖在海马小胶质细胞中,通过增强细胞内ROS的积累激活NLRP3炎性小体[28],并且许多微生物可以通过产生ROS来调节NLRP3炎性小体[29].综上,ROS在NLRP3炎性小体的激活机制中起到重要作用,靶向ROS的调控对于疾病的预防、治疗、转归可能具有积极作用.

近年来越来越多的炎性小体激活机制被研究,NLRC4炎性小体由多种Ⅲ型和Ⅳ型分泌系统的细菌病原体激活[30-31];NLRP1炎性小体会被铜绿假单胞菌和白喉棒状杆菌外毒素活化[32];NLRP6炎性小体主要在肠道上皮中发挥作用,肠道微生物群紊乱时会被激活[33];NLRP7炎性小体主要在分枝杆菌感染时被激活[34],总之进一步研究多种类型炎性小体的激活机制为疾病的治疗提供新的思路和靶点.

3炎性小体在胶质瘤中的表达

炎性小体与肿瘤的生长、侵袭转移和耐药性等密切相关.近期有研究证实:NLRP3、NLRC4和NLRP7可促进肺癌的发生发展[35];在口腔鳞状细胞癌中NLRP3炎性小体激活促进了口腔癌的转移[36];NLRP3与肿瘤的耐药性也有关,沉默NLRP3炎性小体可以抑制卵巢癌对顺铂的耐药性[37].

NLRP3炎性小体被证实主要表达在上皮细胞、单核细胞、粒细胞和树突状细胞等[8].NLRP3炎性小体在正常脑组织中表达较少, 主要位于小胶质细胞中[38],而在胶质瘤中表达显著增加[39].基于TCGA 和GTEx数据库,发现胶质母细胞瘤组织中NOD1、NOD2、NLRC4、NLRC5和NLRX1的mRNA 表达水平显著高于正常脑组织[40].NLRC4在胶质瘤中显著高于正常脑组织[41].NLRC5主要表达于构成血脑屏障的细胞,包括内皮细胞、星形胶质细胞、周细胞[42]. Vijayan等[43]发现NLRC5作为MHC I类基因的转录调节因子被观察到在细胞核的定位.因此明确炎性小体的表达定位有重要意义.

炎性小体可以作为胶质瘤分级的标志物.樊明德等[39]做了NLRP3在胶质瘤中的免疫组化,结果显示高级别比低级别胶质瘤NLRP3阳性表达增多,并且在高级别胶质瘤中构成炎性小体的其他蛋白NLRP3、ASC、IL-1β 和caspase-1的表达水平均升高[44],说明NLRP3的表达与脑胶质瘤恶性程度呈正相关.另外,Han等[40]研究发现胶质母细胞瘤样本中NOD5蛋白的表达显著高于世界卫生组织1~3级胶质瘤样本.NOD1的表达水平与胶质瘤分级呈正相关.

炎性小体NLRC4、NLRC5等可以作为胶质瘤预后的标志物.NLRC4炎性小体在胶质瘤中的作用于2019年首次被描述.Lim等[41]应用TCGA数据比较了NLRP3和NLRC4的表达水平与生存期的关系,Kaplan-Meier生存曲线显示:NLRC4低表达的胶质瘤患者总生存期高于高表达NLRC4的胶质瘤患者,而NLRP3的表达与总生存期无显著相关性.证实NLRC4炎性小体的上调是胶质瘤患者预后差的原因之一.NLRC5是一种干扰素(IFN)相关基因,已被证明与胶质母细胞瘤患者的总生存期有关[45].Han等[40]研究发现NOD1是胶质母细胞瘤患者的独立预后标志物,并且发现NOD1高表达预示着人类胶质瘤患者的预后不良.

4炎性小体在胶质瘤中的功能

4.1炎性小体调控胶质瘤的生物学行为

研究证实炎性小体调控胶质瘤的生物学行为.殷小凤等[46]发现NLRP3具有抑制胶质瘤细胞凋亡、促进其增殖、迁移与侵袭的作用,并且NLPR3炎性小体可增加血脑屏障(BBB)损伤,引起脑水肿和出血,促进神经元死亡[47].NLRP3沉默抑制胶质瘤细胞的生长和侵袭,是通过IL-1β的降低和NF-κB的抑制完成的[48].NLRP3沉默和NF-κB阻断均可抑制IL-1β升高的胶质瘤细胞增殖和侵袭能力[49],已经证实NLRP3通过IL-1β/ NF-κB信号通路影响胶质瘤的进展.应用NF-κB选择性抑制剂BAY 11-7821对胶质瘤细胞进行处理[50],下调了NLRP3蛋白和IL-1β、IL-18的水平,促进了胶质瘤细胞的凋亡和自噬.抑制NF-κB激活自噬,导致自噬细胞死亡,抑制胶质瘤细胞增殖、迁移和侵袭.

下调NLRC5转录激活,Wnt信号通路的作用被抑制,胶质瘤细胞的增殖、迁移和侵袭能力减弱[51].NLRP6是预防结肠炎相关肿瘤发生的重要保护因子.Wang等[52]发现NLRP6作为胃癌的负调节因子起作用,NLRP6通过阻止细胞从G1期到S期的转变,在体外和体内显著抑制胃癌细胞增殖.在胶质瘤中有研究表明,SP1转录激活NLRP6炎性小体,并诱导胶质瘤细胞的恶性发展、免疫逃避和放射抗性[53].SP1和NLRP6可以作为控制胶质瘤的候选靶点.

4.2炎性小体通过焦亡途径调控胶质瘤生长

细胞焦亡(pyroptosis)是一种炎症和程序性细胞死亡模式,依赖caspase-1发挥作用,并伴有大量促炎因子的释放,焦亡激活免疫反应可以影响肿瘤的发生与发展,表现细胞持续膨胀直至外膜完全破裂,排出细胞内容物[54],导致细胞因子的释放和炎症反应级联的激活,这是一种重要的自然免疫反应,对抵抗感染至关重要.在胶质瘤中NLRP3炎性小体激活诱导的细胞焦亡既可以促进肿瘤的生长,又可以通过药物的作用抑制肿瘤的增殖[55],但这种双重作用机制还有待进一步深入研究.

NLRP3炎性小体可以通过焦亡途径调控肿瘤生长[56].HIF-1α过表达促进胶质瘤细胞焦亡,并且HIF-1α过表达后TNF-α、IL-10和IL-1β表达水平均明显升高,证实HIF-1α过表达可以激活NLRP3-caspase-1-GSDMD的细胞焦亡途径[57].Feng等[58]开发了与焦亡相关的lncRNA标记,用于胶质瘤个体总生存期(overall survival,OS)预测,COX10-AS1在胶质瘤患者中与预后不良相关,敲除COX10-AS1通过NLRP3和caspase-1促进胶质瘤细胞焦亡.

Yang等[59]研究发现NLRP3炎性小体通过药物的作用也可抑制胶质瘤的恶性进展.杜洋等[60]证实海星皂苷面包海星3(culcita novaeguineae-3,CN-3)通过激活NLRP3/GSDMD经典焦亡信号通路导致胶质瘤细胞焦亡,抑制胶质瘤细胞的生长.与上一种情况不同的是,Wu等[61]对异补骨脂查耳酮(isobavachalcone,IBC)的研究发现,IBC以剂量依赖性方式下调了NF-κB、NLRP3炎性小体相关蛋白(NLRP3、ASC、半胱天冬酶-18和GSDMD)和下游焦亡效应子(IL-18和IL-1β),通过缓解胶质瘤中NLRP3炎性小体诱导细胞焦亡了抑制肿瘤生长的.

4.3炎性小体在胶质瘤中的免疫调控

肿瘤免疫微环境与炎性小体的调控在胶质瘤治疗中有重要意义.NOD1表达与CD8+ T淋巴细胞浸润呈负相关,并与树突状细胞(dendritic cell,DC)和CD4+ T细胞浸润呈正相关[40].在胶质瘤中,炎性小体可以作用于肿瘤相关巨噬细胞(tumour-associated macrophages,TAM)发挥作用.Liang等[62]在胶质母细胞瘤中发现NLRP3表达较高的患者有较高的TAM 浸润,当癌细胞与TAM共培养时,发现NLRP3、caspase-1和IL-1β的表达显著上调,并且炎性小体抑制与PD-L1阻断联合处理有效抑制了TAM浸润及其M2亚型极化.高迁移率族蛋白l(high-mobility group box 1,HMGBl)通过激活炎性小体促使巨噬细胞的M1样表型极化. RAGE在TAMs中充当HMGB1的受体,应用NLRP3抑制剂CY-09培养THP1细胞, 通过RAGE-NFκB-NLRP3炎性小体途径,HMGB1增强了TAMs的M1样极化[63].

NLRP3炎性小体促进肿瘤免疫抑制微环境的形成.Kim等[64]研究发现,在肺癌NR1D1缺陷的肿瘤微环境中,NLRP3炎性小体的激活在肺癌的发展和上皮间质转换中起非常关键的作用. NLRP3促进肿瘤CD4+T细胞亚群的分化[65],刺激髓源性抑制细胞和TAM 的浸润[66].IL-1β 是NLRP3炎性小体活化的代表性标志物[67], NLRP3炎性小体激活后促使caspase-1活化,产生具有生物活性的IL-1β且释放到细胞外. IL-1β通过促进内皮前体细胞的成熟和管状结构的形成以及血管内皮生长因子(VEGF)来诱导血管生成[68] .IL-1β在胶质瘤中可能是抑制NLRP3炎性小体激活的靶点之一.开发IL-1β 中和抗体与IL-1β结合蛋白的靶向化合物对于胶质瘤的治疗有一定作用.

5基于炎性小体的治疗策略

炎性小体受体蛋白、caspase-1和促炎细胞因子的药理学抑制可能有助于胶质瘤的治疗.Liu等[69]研究表明,GSDMD蛋白的表达在替莫唑胺(TMZ)处理的胶质瘤细胞中明显升高.敲低GSDMD表达显著降低了焦亡,降低了IL-1β和LDH的表达.具有高GSDMD表达的胶质瘤细胞可能对化疗药物的敏感性增加,耐药性降低.基于炎性小体激活机制中的GSDMD进行靶点研究,对于胶质瘤的化疗耐药有潜在价值.

抑制caspase-1、IL-18、IL-1β 以及NLRP3蛋白的合成是目前基于炎性小体的常见的抗肿瘤治疗策略.Tong等[70]发现小檗碱可能作为一种有效的抗肿瘤药物用于胶质瘤治疗,其治疗显著减少了胶质瘤中IL-18和IL-1β 的产生并降低肿瘤细胞迁移速率,且通过ERK1/2信号传导通路抑制caspase-1,促进了细胞死亡.有研究[71]发现,β-羟基丁酸降低了具有生物活性的IL-1β 和活化的caspase-1的水平,抑制NF-κB、STAT3信号通路,通过抑制NLRP3炎性小体活化来抑制胶质瘤的迁移.通过筛选已知靶化合物库,研究者确定化合物WP1066是一种被NLRP3炎性小体激动剂诱导的巨噬细胞死亡的抑制剂, WP1066通过抑制IL-1β 的释放诱导了人类胶质瘤A172和T98G细胞的死亡.机制上证明了WP1066诱导的巨噬细胞死亡不依赖于其对JAK-STAT3信号传导的影响[72]. 因此,NLRP3炎性小体是控制IL-1β产生的一个有潜力的药物靶点.另外,文献[73]报道,硒化咪唑并[1,2-a]吡啶衍生物IP-Se-06对p38 MAPK和p-p38表现出显著的抑制作用,从而抑制胶质母细胞瘤细胞中的炎性小体复合蛋白(NLRP3和胱天蛋白酶-1),并通过抑制Akt/mTOR/HIF-1α和ERK1/2信号通路显示出抗增殖作用. 因此,炎性小体可能是治疗胶质母细胞瘤潜在的治疗靶点.

近期基于炎性小体NLR家族成员CIITA在胶质母细胞瘤中免疫治疗策略被报道. Celesti等[74]证实GL261-CIITA细胞是一种有效的抗胶质母细胞瘤疫苗.由于CIITA驱动了MHC II类表达和随后获得的针对肿瘤特异性CD4+Th细胞的替代抗原呈递功能, GL261-CIITA细胞在体内刺激抗肿瘤免疫反应.通过在右脑半球注射GL261-CIITA细胞接种的小鼠强烈排斥在对侧脑半球注射的亲本GL261肿瘤生长,这不仅表明接种疫苗后获得了抗肿瘤免疫记忆,而且表明免疫T细胞有能力在大脑内迁移,克服血脑屏障.这种新型疫苗免疫治疗策略在胶质瘤的临床治疗中具有潜在应用的可行性.

6小结与展望

炎性小体与胶质瘤的发生、发展有密切关系.迄今为止,通过研究已经逐步了解到炎性小体的构成、激活机制及对胶质瘤生物学行为的影响.已证实炎性小体与胶质瘤恶性程度有关,可以促进胶质瘤细胞增殖、侵袭、焦亡等.关于炎性小体在胶质瘤中的研究还有许多未知的问题亟待解决,如在机制研究方面,炎性小体诱导的细胞焦亡的双重作用机制尚需深入阐明. 未来研发炎性小体及其相关通路的抑制剂或激动剂,研发靶向炎性小体的抗肿瘤药物,改善临床胶质瘤患者的预后, 必将推动胶质瘤转化医学研究及发展.

参考文献:

[1]YI K K, ZHAN Q, WANG Q X, et al. PTRF/cavin-1 remodels phospholipid metabolism to promote tumor proliferation and suppress immune responses in glioblastoma by stabilizing cPLA2[J]. Neuro-oncology, 2021, 23(3): 387-399. DOI: 10.1093/neuonc/noaa255.

[2]ZHANG R, SONG Q, LIN X,et al. GSDMA at the crossroads between pyroptosis and tumor immune evasion in glioma[J].Biochem Biophys Res Commun,2023,686:149181. DOI:10.1016/j.bbrc.2023.149181.

[3]MARTINON F, BURNS K, TSCHOPP J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta[J]. Mol Cell, 2002, 10(2): 417-426. DOI: 10.1016/s1097-2765(02)00599-3.

[4]LIU S W, SONG W J, MA G K, et al. Pyroptosis and its role in cancer[J]. World J Clin Cases, 2023, 11(11): 2386-2395. DOI: 10.12998/wjcc.v11.i11.2386.

[5]SUNDARAM B, KANNEGANTI T D. Advances in understanding activation and function of the NLRC4 inflammasome[J]. Int J Mol Sci, 2021, 22(3): 1048. DOI: 10.3390/ijms22031048.

[6]王文连,林欣,胡俊锋.炎性小体在肺部疾病中的作用[J].中国呼吸与危重监护杂志, 2019,18(4): 404-408. DOI: 10.7507/1671-6205.201805056.

[7]王变丽,王天怡,张露丹,等.炎性小体及细胞焦亡在肠道稳态中的研究进展[J]. 中国免疫学杂志, 2023, 39(6): 1337-1341. DOI: 10.3969/j.issn.1000-484X.2023.06.046.

[8]耿晋,朱永杰,耿蕴琦,等.炎性小体及其与结直肠癌关系的研究进展[J].军事医学, 2018, 42(6): 471-475. DOI:10.7644/j.issn.1674-9960.2018.06.016.

[9]CHEW Z H, CUI J Z, SACHAPHIBULKIJ K, et al. Macrophage IL-1β contributes to tumorigenesis through paracrine AIM2 inflammasome activation in the tumor microenvironment[J]. Front Immunol, 2023, 14: 1211730. DOI: 10.3389/fimmu.2023.1211730.

[10]BURDETTE B E, ESPARZA A N, ZHU H,et al. Gasdermin D in pyroptosis[J]. Acta Pharm Sin B, 2021;11(9):2768-2782. DOI:10.1016/j.apsb.2021.02.006

[11]CHRISTGEN S, PLACE D E, KANNEGANTI T D. Toward targeting inflammasomes: insights into their regulation and activation[J]. Cell Res, 2020, 30(4): 315-327. DOI: 10.1038/s41422-020-0295-8.

[12]ROSS C, CHAN A H, VON PEIN J B, et al. Inflammatory caspases: toward a unified model for caspase activation by inflammasomes[J]. Annu Rev Immunol, 2022, 40: 249-269. DOI: 10.1146/annurev-immunol-101220-030653.

[13]CHAUHAN D, VANDE WALLE L, LAMKANFI M. Therapeutic modulation of inflammasome pathways[J]. Immunol Rev, 2020, 297(1): 123-138. DOI: 10.1111/imr.12908.

[14]SHI J J, ZHAO Y, WANG K, et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death[J]. Nature, 2015, 526(7575): 660-665. DOI: 10.1038/nature15514.

[15]TAPIA-ABELLN A, ANGOSTO-BAZARRA D, ALARCN-VILA C, et al. Sensing low intracellular potassium by NLRP3 results in a stable open structure that promotes inflammasome activation[J]. Sci Adv, 2021, 7(38): eabf4468. DOI: 10.1126/sciadv.abf4468.

[16]PENG L C, TIAN H L, LU Y, et al. Chicken cathelicidin-2 promotes NLRP3 inflammasome activation in macrophages[J]. Vet Res, 2022, 53(1): 69. DOI: 10.1186/s13567-022-01083-4.

[17]MURAKAMI T, OCKINGER J, YU J J, et al. Critical role for calcium mobilization in activation of the NLRP3 inflammasome[J]. Proc Natl Acad Sci USA, 2012, 109(28): 11282-11287. DOI: 10.1073/pnas.1117765109.

[18]LIU Q Y, WANG D D, YANG X D, et al. The mechanosensitive ion channel PIEZO1 in intestinal epithelial cells mediates inflammation through the NOD-like receptor 3 pathway in Crohn’s disease[J]. Inflamm Bowel Dis, 2023, 29(1): 103-115. DOI: 10.1093/ibd/izac152.

[19]ZHANG Z, XIE S J, QIAN J, et al. Targeting macrophagic PIM-1 alleviates osteoarthritis by inhibiting NLRP3 inflammasome activation via suppressing mitochondrial ROS/Cl- efflux signaling pathway[J]. J Transl Med, 2023, 21(1): 452. DOI: 10.1186/s12967-023-04313-1.

[20]GREEN J P, YU S, MARTN-SNCHEZ F, et al. Chloride regulates dynamic NLRP3-dependent ASC oligomerization and inflammasome priming[J]. Proc Natl Acad Sci USA, 2018, 115(40): E9371-E9380. DOI: 10.1073/pnas.1812744115.

[21]CHEN F, FENG L, ZHENG Y L, et al. 2, 2′, 4, 4′-tetrabromodiphenyl ether (BDE-47) induces mitochondrial dysfunction and related liver injury via eliciting miR-34a-5p-mediated mitophagy impairment[J]. Environ Pollut, 2020, 258: 113693. DOI: 10.1016/j.envpol.2019.113693.

[22]AN C, SUN F, LIU C, et al. IQGAP1 promotes mitochondrial damage and activation of the mtDNA sensor cGAS-STING pathway to induce endothelial cell pyroptosis leading to atherosclerosis[J]. Int Immunopharmacol, 2023, 123: 110795. DOI: 10.1016/j.intimp.2023.110795.

[23]YANG B W, WANG Y T, FANG C Y, et al. Polybrominated diphenyl ether quinone exposure leads to ROS-driven lysosomal damage, mitochondrial dysfunction and NLRP3 inflammasome activation[J]. Environ Pollut, 2022, 311: 119846. DOI: 10.1016/j.envpol.2022.119846.

[24]HOU Y T, HE H B, MA M, et al. Apilimod activates the NLRP3 inflammasome through lysosome-mediated mitochondrial damage[J]. Front Immunol, 2023, 14: 1128700. DOI: 10.3389/fimmu.2023.1128700.

[25]NEUWIRT E, MAGNANI G, C′IKOVI T, et al. Tyrosine kinase inhibitors can activate the NLRP3 inflammasome in myeloid cells through lysosomal damage and cell lysis[J]. Sci Signal, 2023, 16(768): eabh1083. DOI: 10.1126/scisignal.abh1083.

[26]WANG W Q, CHANG R, WANG Y, et al. Mitophagy-dependent mitochondrial ROS mediates 2, 5-hexanedione-induced NLRP3 inflammasome activation in BV2 microglia[J]. Neurotoxicology, 2023, 99: 50-58. DOI: 10.1016/j.neuro.2023.09.008.

[27]GAI Y, BAI C, ZHANG W, et al. Nootkatone attenuates airway inflammation in asthmatic mice through repressing ROS-induced NLRP3 inflammasome activation[J]. Biochem Cell Biol, 2023, 101(6): 513-522. DOI: 10.1139/bcb-2023-0009.

[28]SU W J, LI J M, ZHANG T, et al. Microglial NLRP3 inflammasome activation mediates diabetes-induced depression-like behavior via triggering neuroinflammation[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2023, 126: 110796. DOI: 10.1016/j.pnpbp.2023.110796.

[29]ROSA C P, BELO T C A, SANTOS N C M, et al. Reactive oxygen species trigger inflammasome activation after intracellular microbial interaction[J]. Life Sci, 2023, 331: 122076. DOI: 10.1016/j.lfs.2023.122076.

[30]TURTON K, PARKS H J, ZARODKIEWICZ P, et al. The Achromobacter type 3 secretion system drives pyroptosis and immunopathology via independent activation of NLRC4 and NLRP3 inflammasomes[J]. Cell Rep, 2023, 42(8): 113012. DOI: 10.1016/j.celrep.2023.113012.

[31]KOIZUMI Y, TOMA C, HIGA N, et al. Inflammasome activation via intracellular NLRs triggered by bacterial infection[J]. Cell Microbiol, 2012, 14(2): 149-154. DOI: 10.1111/j.1462-5822.2011.01707.x.

[32]TIBBLE R, YONEMITSU M A, MITCHELL P S. Stalled but not forgotten: bacterial exotoxins inhibit translation to activate NLRP1[J]. J Exp Med, 2023, 220(10): e20231160. DOI: 10.1084/jem.20231160.

[33]ZHENG D P, KERN L, ELINAV E. The NLRP6 inflammasome[J]. Immunology, 2021, 162(3): 281-289. DOI: 10.1111/imm.13293.

[34]ZHOU Y, SHAH S Z, YANG L F, et al. Virulent mycobacterium bovis Beijing strain activates the NLRP7 inflammasome in THP-1 macrophages[J]. PLoS One, 2016, 11(4): e0152853. DOI: 10.1371/journal.pone.0152853.

[35]JING X, YUN Y H, JI X, et al. Pyroptosis and inflammasome-related genes- NLRP3, NLRC4 and NLRP7 polymorphisms were associated with risk of lung cancer[J]. Pharmgenomics Pers Med, 2023, 16: 795-804. DOI: 10.2147/PGPM.S424326.

[36]CASILI G, SCUDERI S A, LANZA M, et al. Therapeutic potential of BAY-117082, a selective NLRP3 inflammasome inhibitor, on metastatic evolution in human oral squamous cell carcinoma (OSCC)[J]. Cancers, 2023, 15(10): 2796. DOI: 10.3390/cancers15102796.

[37]LI W J, ZHAO X B, ZHANG R J, et al. Silencing of NLRP3 sensitizes chemoresistant ovarian cancer cells to cisplatin[J]. Mediators Inflamm, 2023, 2023: 7700673. DOI: 10.1155/2023/7700673.

[38]LIU H D, LI W, CHEN Z R, et al. Expression of the NLRP3 inflammasome in cerebral cortex after traumatic brain injury in a rat model[J]. Neurochem Res, 2013, 38(10): 2072-2083. DOI: 10.1007/s11064-013-1115-z.

[39]樊明德,张源,苗保旺,等.Nod样受体热蛋白结构域相关蛋白3在人脑胶质瘤中的表达[J].山东大学学报(医学版), 2013, 51(4): 51-54. DOI: 10.6040/j.issn.1671-7554.2013.04.012.

[40]HAN S Y, ZHANG Z M, MA W B, et al. Nucleotide-binding oligomerization domain (NOD)-like receptor subfamily C (NLRC) as a prognostic biomarker for glioblastoma multiforme linked to tumor microenvironment: a bioinformatics, immunohistochemistry, and machine learning-based study[J]. J Inflamm Res, 2023, 16: 523-537. DOI: 10.2147/JIR.S397305.

[41]LIM J, KIM M J, PARK Y, et al. Upregulation of the NLRC4 inflammasome contributes to poor prognosis in glioma patients[J]. Sci Rep, 2019, 9(1): 7895. DOI: 10.1038/s41598-019-44261-9.

[42]ZHANG L, JIAO C, LIU L J, et al. NLRC5: a potential target for central nervous system disorders[J]. Front Immunol, 2021, 12: 704989. DOI: 10.3389/fimmu.2021.704989.

[43]VIJAYAN S, SIDIQ T, YOUSUF S, et al. Class I transactivator, NLRC5: a central player in the MHC class I pathway and cancer immune surveillance[J]. Immunogenetics, 2019,71(3):273-282.DOI:10.1007/s00251-019-01106-z.

[44]YIN X F, ZHANG Q, CHEN Z Y, et al. NLRP3 in human glioma is correlated with increased WHO grade, and regulates cellular proliferation, apoptosis and metastasis via epithelial-mesenchymal transition and the PTEN/AKT signaling pathway[J]. Int J Oncol, 2018, 53(3): 973-986. DOI: 10.3892/ijo.2018.4480.

[45]ZHU C, ZOU C Y, GUAN G F, et al. Development and validation of an interferon signature predicting prognosis and treatment response for glioblastoma[J]. Oncoimmunology, 2019, 8(9): e1621677. DOI: 10.1080/2162402X.2019.1621677.

[46]殷小凤.NLRP3在人胶质瘤中的表达及其对胶质瘤细胞生物学行为的作用研究[D].广州:南方医科大学, 2017

[47]BELLUT M, PAPP L, BIEBER M, et al. NLPR3 inflammasome inhibition alleviates hypoxic endothelial cell death in vitro and protects blood-brain barrier integrity in murine stroke[J]. Cell Death Dis, 2021, 13(1): 20. DOI: 10.1038/s41419-021-04379-z.

[48]XUE L, LU B, GAO B, et al. NLRP3 promotes glioma cell proliferation and invasion via the interleukin-1β/NF-κB p65 signals[J].Oncol Res,2019;27(5):557-564. DOI:10.3727/096504018X15264647024196.

[49]XUE L P, LU B, GAO B B, et al. NLRP3 promotes glioma cell proliferation and invasion via the interleukin-1β/NF-κB p65 signals[J]. Oncol Res, 2019, 27(5): 557-564. DOI: 10.3727/096504018X15264647024196.

[50]XIE K, ZHOU D M, FANG C, et al. Inhibition of NF-κB activation by BAY 11-7821 suppresses the proliferation and inflammation of glioma cells through inducing autophagy[J]. Transl Cancer Res TCR, 2022, 11(2): 403-413. DOI: 10.21037/tcr-21-2914.

[51]ZONG Z Q, SONG Y C, XUE Y X, et al. Knockdown of LncRNA SCAMP1 suppressed malignant biological behaviours of glioma cells via modulating miR-499a-5p/LMX1A/NLRC5 pathway[J]. J Cell Mol Med, 2019, 23(8): 5048-5062. DOI: 10.1111/jcmm.14362.

[52]WANG H B, XU G X, HUANG Z J, et al. LRP6 targeting suppresses gastric tumorigenesis via P14ARF-Mdm2-p53-dependent cellular senescence[J]. Oncotarget, 2017, 8(67): 111597-111607. DOI: 10.18632/oncotarget.22876.

[53]YU Y H, CAO F, XIONG Y Q, et al. SP1 transcriptionally activates NLRP6 inflammasome and induces immune evasion and radioresistance in glioma cells[J]. Int Immunopharmacol, 2021, 98: 107858. DOI: 10.1016/j.intimp.2021.107858.

[54]WAN S C, ZHANG G H, LIU R C, et al. Pyroptosis, ferroptosis, and autophagy cross-talk in glioblastoma opens up new avenues for glioblastoma treatment[J]. Cell Commun Signal, 2023, 21(1): 115. DOI: 10.1186/s12964-023-01108-1.

[55]TANG N, ZHU Y, YU J. Xihuang pill facilitates glioma cell pyroptosis via the POU4F1/STAT3 axis[J]. Funct Integr Genomics,2023;23(4):334. DOI:10.1007/s10142-023-01263-1.

[56]ZHAO X, CHEN C, HAN W, et al. EEBR induces Caspase-1-dependent pyroptosis through the NF-κB/NLRP3 signalling cascade in non-small cell lung cancer[J].J Cell Mol Med,2024;28(3):e18094. DOI:10.1111/jcmm.18094.

[57]陈健,郭志娟,裴美娟,等.HIF-1α对人脑胶质瘤SHG44细胞恶性度的影响及其机制[J].武警医学, 2022, 33(6): 484-488. DOI: 10.3969/j.issn.1004-3594.2022.06.007.

[58]FENG X Q, CHEN Y H, LIU X Y, et al. Construction and verification of a novel pyroptosis-related lncRNA signature associated with immune landscape in gliomas[J]. J Oncol, 2022, 2022: 7043431. DOI: 10.1155/2022/7043431.

[59]YANG S, XIE C, GUO T, et al. Simvastatin inhibits tumor growth and migration by mediating caspase-1-dependent pyroptosis in glioblastoma multiforme[J].World Neurosurg,2022;165:e12-e21. DOI:10.1016/j.wneu.2022.03.089

[60]杜洋,邱鹏程,王媛媛,等.海星皂苷CN-3激活NLRP3/Caspase-1/GSDMD信号通路诱导胶质瘤细胞焦亡的作用[J].环球中医药, 2022, 15(11): 2022-2029. DOI: 10.3969/j.issn.1674-1749.2022.11.006.

[61]WU Y S, CHANG J, GE J J, et al. Isobavachalcone’s alleviation of pyroptosis contributes to enhanced apoptosis in glioblastoma: possible involvement of NLRP3[J]. Mol Neurobiol, 2022, 59(11): 6934-6955. DOI: 10.1007/s12035-022-03010-2.

[62]LIANG Q Y, WU J Q, ZHAO X, et al. Establishment of tumor inflammasome clusters with distinct immunogenomic landscape aids immunotherapy[J]. Theranostics, 2021, 11(20): 9884-9903. DOI: 10.7150/thno.63202.

[63]LI Z, FU W J, CHEN X Q, et al. Autophagy-based unconventional secretion of HMGB1 in glioblastoma promotes chemosensitivity to temozolomide through macrophage M1-like polarization[J]. J Exp Clin Cancer Res, 2022, 41(1): 74. DOI: 10.1186/s13046-022-02291-8.

[64]KIM S M, JEON Y, JANG J Y, et al. NR1D1 deficiency in the tumor microenvironment promotes lung tumor development by activating the NLRP3 inflammasome[J]. Cell Death Discov, 2023, 9(1): 278. DOI: 10.1038/s41420-023-01554-3.

[65]DALEY D, MANI V R, MOHAN N, et al. NLRP3 signaling drives macrophage-induced adaptive immune suppression in pancreatic carcinoma[J].J Exp Med, 2017;214(6):1711-1724. DOI:10.1084/jem.20161707.

[66]TENGESDAL I W, MENON D R, OSBORNE D G, et al. Targeting tumor-derived NLRP3 reduces melanoma progression by limiting MDSCs expansion[J]. Proc Natl Acad Sci USA, 2021;118(10):e2000915118. DOI:10.1073/pnas.2000915118.

[67]CHEN Z, GIOTTI B, KALUZOVA M, et al. A paracrine circuit of IL-1β/IL-1R1 between myeloid and tumor cells drives genotype-dependent glioblastoma progression[J].J Clin Invest, 2023;133(22):e163802. DOI:10.1172/JCI163802.

[68]GELFO V, ROMANIELLO D, MAZZESCHI M, et al. Roles of IL-1 in cancer: from tumor progression to resistance to targeted therapies[J].Int J Mol Sci, 2020;21(17):6009. DOI:10.3390/ijms21176009.

[69]LIU J H, GAO L, ZHU X N, et al. Gasdermin D is a novel prognostic biomarker and relates to TMZ response in glioblastoma[J]. Cancers, 2021, 13(22): 5620. DOI: 10.3390/cancers13225620.

[70]TONG L, XIE C C, WEI Y F, et al. Antitumor effects of berberine on gliomas via inactivation of caspase-1-mediated IL-1β and IL-18 release[J]. Front Oncol, 2019, 9: 364. DOI: 10.3389/fonc.2019.00364.

[71]SHANG S, WANG L L, ZHANG Y L, et al. The beta-hydroxybutyrate suppresses the migration of glioma cells by inhibition of NLRP3 inflammasome[J]. Cell Mol Neurobiol, 2018, 38(8): 1479-1489. DOI: 10.1007/s10571-018-0617-2.

[72]HONDA S, SADATOMI D, YAMAMURA Y, et al. WP1066 suppresses macrophage cell death induced by inflammasome agonists independently of its inhibitory effect on STAT3[J]. Cancer Sci, 2017, 108(3): 520-527. DOI: 10.1111/cas.13154.

[73]DOS SANTOS DC, RAFIQUE J, SABA S, et al. IP-Se-06, a selenylated imidazo[1, 2- a]pyridine, modulates intracellular redox state and causes akt/mTOR/HIF-1 α and MAPK signaling inhibition, promoting antiproliferative effect and apoptosis in glioblastoma cells[J]. Oxid Med Cell Longev, 2022, 2022: 3710449. DOI: 10.1155/2022/3710449.

[74]CELESTI F, GATTA A, SHALLAK M, et al. Protective anti-tumor vaccination against glioblastoma expressing the MHC class II transactivator CIITA[J]. Front Immunol, 2023, 14: 1133177. DOI: 10.3389/fimmu.2023.1133177.

(责任编辑:赵藏赏)

猜你喜欢
焦亡小体胶质瘤
针刺对脑缺血再灌注损伤大鼠大脑皮质细胞焦亡的影响
miRNA调控细胞焦亡及参与糖尿病肾病作用机制的研究进展
医学综述(2022年7期)2022-04-19 12:31:12
缺血再灌注损伤与细胞焦亡的相关性研究进展
电针对脑缺血再灌注损伤大鼠海马区细胞焦亡相关蛋白酶Caspase-1的影响
一种优化小鼠成纤维细胞中自噬小体示踪的方法
DCE-MRI在高、低级别脑胶质瘤及脑膜瘤中的鉴别诊断
磁共振成像(2015年8期)2015-12-23 08:53:14
P21和survivin蛋白在脑胶质瘤组织中的表达及其临床意义
炎症小体与肾脏炎症研究进展
西南军医(2015年3期)2015-04-23 07:28:32
Sox2和Oct4在人脑胶质瘤组织中的表达及意义
NLRP3炎症小体与动脉粥样硬化的研究进展