郭少晨 陆宇
摘要:全球耐药结核病形势严峻,临床中用于治疗耐药结核病的药物选择非常有限,导致了治疗的困难和挑战,开发新型抗结核药物对于耐药结核病的治疗具有关键性的作用。恶唑烷酮类药物及其结构改造物显示出对结核分枝杆菌耐药菌株具有良好的抗菌活性。本文对近期关于恶唑烷酮类药物作用机制、临床前体内外抗结核活性、药动学特点、安全性和临床试验研究进展进行综述。
关键词:耐药结核病;恶唑烷酮类药物;药动学;药效学
中图分类号:R978.3文献标志码:A
New oxazolidinone drugs and perspectives for anti-tuberculosis agents
Guo Shaochen and Lu Yu
(Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149)
Abstract The global situation of drug-resistant tuberculosis is severe, with limited drug options available for the treatment of drug-resistant tuberculosis, resulting in challenges and difficulties in treatment. The development of new anti-tuberculosis drugs plays a crucial role in the treatment of drug-resistant tuberculosis. Oxazolidinone drugs and their structural derivatives have shown good antibacterial activity against drug-resistant strains of Mycobacterium tuberculosis. This article reviewed recent advances in the understanding of the mechanism of action, preclinical studies on the anti-tuberculosis activity, pharmacokinetic properties, safety, and clinical trials of oxazolidinone drugs.
Key words Drug-resistant tuberculosis; Oxazolidinone drugs; Pharmacokinetics; Pharmacodynamics
耐多药结核病仍然是一项公共卫生危机和卫生安全威胁。2021年,全球范围内估算有约45万例耐多药/利福平耐药结核病(multidrug-resistant TB or rifampicin-resistant TB, MDR/RR-TB)患者,耐药结核病形势非常严峻[1]。耐药结核病治疗需要组合3~5种药物组成有效的治疗方案,治疗周期长、成功率低。耐药结核病治疗需要新药新方案缩短疗程,提高治愈率。
恶唑烷酮类药物为人工合成类抗生素,20世纪80年代杜邦公司发现两个恶唑烷酮类化合物DuP-721和DuP-105对β-内酰胺酶耐药和甲氧西林耐药的葡萄球菌具有抑制活性而受到关注[2]。研究者还发现DuP-721对结核分枝杆菌、堪萨斯分枝杆菌和瘰疬分枝杆菌表现出良好的抗菌作用,特别是对异烟肼、利福平、链霉素单耐药和联合耐药的结核分枝杆菌依旧保持着抑制活性,最低抑菌浓度0.97~4.0 μg/mL[3]。
作用于蛋白质翻译系统的翻译过程的起始阶段,药物在体内通过与结核分枝杆菌的50S核糖体亚基结合,干扰50S核糖体亚基与30S核糖体亚基、mRNA、启动因子(IF1、IF2、IF3)和N-甲酰甲硫氨酸-tRNA的连接,阻止70S起始复合物的形成,抑制蛋白质翻译的延伸阶段,从而达到抑制细菌蛋白质的合成的目的,最终抑制结核分枝杆菌的生长[4-7]。恶唑烷酮类药物抑制蛋白质合成的作用靶点与其他抑制蛋白质合成抗生素的靶点不同,恶唑烷酮类化合物对肽酰转移酶活性和肽链的释放阶段无影响[6,8]。
由于恶唑烷酮类化合物独特的作用机制,所以不与现有其他抗结核药物发生交叉耐药。
利奈唑胺(linezolid, LZD)是2010年FDA批准上市的恶唑烷酮类抗生素,于2018年成为治疗耐药结核病A组的核心药物,不仅对复制期的结核分枝杆菌,对慢生长和非复制期结核分枝杆菌也有抑制作用[9-11]。2019年,BPaL方案被批准有条件上市作为耐药结核病治疗方案[12]。LZD治疗窗窄,易出现药物不良反应,如血小板降低、骨髓抑制、乳酸中毒、外周和视神经病变等,主要出现在服用LZD1-2个月后[13-14]。一项前瞻性随机对照研究中发现在服用LZD后,有81.8%患者出现不同程度的不良反应[15]。
LZD价格较贵,增加了患者的治疗负担,尤其是在一些经济不发达地区,LZD的应用面临着很大的限制。近年来,研究者希望通过结构改造发现抗结核活性高、体内药动学特征好和毒性低的化合物,本文对目前临床前和进入临床试验的恶唑烷酮类化合物展开综述。
1 恶唑烷酮类药物 (表1和图1)
恶唑烷酮类药物主要通过化学结构中恶唑烷酮(A环)、苯环(B环)和吗啉环(C环),以及A环中C-5位置上的官能团进行改造,从而使得化合物具有更优的抗菌活性和药动学特点。结构-活性关系研究表明,化合物苯环和恶唑烷酮环的C-5为(S)构型对活性至关重要,同时对与该位置基团也可以进行结构改造从而获得更好的活性,对吗啉环的结构改造则可以改善药物的药动学特点和溶解性[16]。
1.1 Sutezolid (PNU-100480)
Sutezolid又名PNU-100480,在化学结构式中C环含有硫代吗啉取代基团,在体外对结核分枝杆菌具有抑制作用,对敏感菌株和耐药菌株MIC的范围在0.03~0.5 μg/mL之间,代谢产物为亚砜代谢物PNU-101603和苯基砜代谢物PNU-101244,其中PNU-101603也具有抗结核活性[17]。体内研究表明,服用剂量25~100 mg/kg的Sutezolid 4周后,能够观察到结核感染小鼠肺、脾组织中结核分枝杆菌菌落数明显降低,药效与INH相近[18]。小鼠体内实验表明100 mg/kg
的Sutezolid抗结核作用强于LZD,安全性强于LZD。Sutezolid还能够增强INH+RFP+PZA组合方案和MFX+PZA组合方案的抗结核活性,小鼠肺组织多降低约2log10 CFU[19]。Sutezolid具有口服吸收快的药动学特点,Tmax在1.75~2.5 h,口服后能够迅速在体内分布,分布容积Vz/F为990 L~2000 L,
清除速率(CL/F)为145~167 L/h,半衰期T1/2在4.08~11.7 h,sutezolid的分布容积和半衰期随服用高剂量而升高,体现中心室在药物消除相的作用[20]。Sutezolid安全性较高,在健康受试者体内1000 mg/kg下,受试者均能够耐受[21]。300~1800 mg
单次给药情况下,健康受试者未出现明显的心电图信号改变和其他与心脏相关的不良反应[20]。
目前,II b期临床试验(临床试验NCT03959566)评估不同剂量的Sutezolid(0,600 mg每日一次,1200 mg 每日一次,600 mg每日两次,800 mg每日两次)在药物组合BDQ+DEL+MFX组合中的安全性、耐受性、药动学和量效关系[22]。通过研究药物暴露与毒性之间的关系,该研究旨在确定Sutezolid的最佳剂量,以在保持可接受的安全性的同时提供最佳疗效。
1.2 Delpazolid (LCB01-0371)
Delpazolid,又名LCB01-0371,由韩国LegoChem BioSciences公司合成。Delpazolid的关键骨架上应用了环状氨肟酮结构,保持了一定的疏水性,并具有与羧酸类似的微弱碱性pH。因此,在人体生理条件下,它可以通过从羧酸获得质子而带电,从而增强了其溶解度和药动学特性[23]。Delpazolid对MDR-TB的MIC比LZD低,具有在巨噬细胞内抗结核活性[23-24]。药物相互作用研究结果表明,delpazolid与BDQ、CFZ和PZA存在部分协同作用,与利福类、氟喹诺酮类药物存在相加作用[23]。
在400~1200 mg剂量范围内,AUC0-12和Cmax不按服药剂量成比例上升,说明此药物表现为非线性PK特点[25]。Delpazolid口服吸收较快,半衰期T1/2约2 h,仅为LZD半衰期的1/3~1/2,经尿排泄占给药剂量的8%左右,服药12h后人体内基本上检测不到delpazolid[26]。Delpazolid的安全性较高,在大鼠模型中就表现出较低的骨髓抑制和神经毒性。在I期临床试验和临床前实验均表现出较低的线粒体毒性,并且由于delpazolid不是细胞色素酶P450和药物转运体的底物,很少引起药物间相互作用[23,27]。Ⅱ期临床试验(临床试验NCT02836483)评估不同剂量下的Delpazolid(800 mg每日一次,400 mg每日两次,800 mg每日两次和1,200 mg每日一次)的早期杀菌活性和安全性。日均下降菌落数分别为0.044±0.016,0.053±0.017,0.043±0.016和0.019±0.017,且未发现受试者出现与该药物相关的严重不良反应[26]。目前,delpazolid正在进行IIb期临床试验(临床试验NCT04550832),评估药物在BDQ+DEL+MFX组合方案中发挥的药效与药物在体内暴露量之间的关系[26]。
1.3 Contezolid (MRX-1)
Contezolid在结构上采用 “三氟非共面”分子结构设计,即B环有临位F,增加了A、B环的非共面性,显著降低毒性;C环二氢吡啶酮结构替代吗啉环,加快药物代谢,缩短半衰期[28]。体外微孔板稀释实验发现contezolid对异烟肼敏感和耐药的结核分枝杆菌株均具有抑制作用,MIC在0.5~1.0 μg/mL
之间,其活性与LZD相似[29]。在结核分枝杆菌Erdman感染的BALB/c小鼠模型中,100 mg/kg剂量的conetezolid和LZD能够显著降低小鼠肺脏组织中,表现出较强的抗结核活性,低剂量(25 mg/kg, BID)和中剂量(50 mg/kg, BID)的contezolid抑菌作用较高剂量组较弱[29]。群体药动学研究表明,contezolid口服ADME过程是二室模型,吸收过程受食物影响,受试者体重影响外周室分布容积,contezolid符合一级消除动力学特点,主要通过尿液和粪便排出体外,主要代谢物为MRX445-1和MRX459[30-31]。Contezolid安全性好,健康受试者可耐受口服单剂量800、1200和1600 mg[32]。PK/PD研究显示contezolid在800 mg治疗剂量下不会使QT间期延长,而超治疗剂量(1600 mg)下对QT间期延长仅有较轻的作用[33-34]。除此之外,还表现出较弱的诱导MAO相关5-羟色胺能神经毒性和骨髓抑制毒性[28]。目前,在国内还在开展康替唑胺片治疗结核分枝杆菌感染的临床研究,研究旨在评估康替唑胺片对初治敏感肺结核和耐多药肺结核患者早期杀菌活性、安全性和耐受性。
1.4 AZD5847 (Posizolid)
AZD5847抗结核活性呈剂量依赖,在细胞内外均具有抗结核活性,MIC<1 μg/mL。无论从抗结核活性以及杀菌速率上看,AZD5847均优于LZD[35]。结核感染模型小鼠在接受AZD5847治疗后4周,可降低肺组织中1log10 CFU,(AUC在105~158 μg/mL之间)。PK/PD研究表明AZD5847药效学靶值在游离药物AUC/MIC>20,在有效的药物组合方案中%T>MIC≥25%[36]。AZD5847与其他抗结核药物应用有相加作用,提示AZD5748在未来可以应用于联合疗法中。在随后进行的临床试验Ⅱ期研究中(NCT01516203),评价AZD5847对60名感染敏感菌株的结核病患者进行为期14 d的早期杀菌活性,结果显示AZD5847没有表现出优于其他恶唑烷酮类化合物的抗结核活性。从药动学特点分析,AZD5847在人体内按二室模型分布,存在药物吸收过程滞后的现象,并且AZD5847在小鼠体内分布容积和清除率较低,消除半衰期(elimination half-life)较长。AZD5847的AUC、(fAUC)/MIC和fT>MIC三项PK/PD参数均比阳性对照药物LZD和sutezolid低[37-38]。目前,AstraZeneca公司已经将化合物AZD5847从新药管线中移除。
1.5 特地唑胺(tedizolid)
磷酸特地唑胺作为恶唑烷酮类前药,进入体内可以迅速转化为有抗菌活性的特地唑胺[39]。特地唑胺对C-5侧链进行了改造,并增加了D环,使得与核糖体的结合位点增加,从而增加抗菌活性[40]。体外实验证明特地唑胺对结核分枝杆菌临床敏感株和耐药株均具有抑制作用,对非复制期的结核分枝杆菌也同样具有活性,同时具有巨噬细胞内活性,与阳性对照药物MFX和RFP相当[41-43]。特地唑胺可与现有的抗结核药物组成有效的药物组合方案,研究表明特地唑胺代替LZD与MFX的药物组合杀菌速率常数为每日(0.27±0.05)[44-45]。特地唑胺对作用靶点亲和力更强,较LZD不易发生耐药性[46]。特地唑胺安全性高,体外实验证明随着特地唑胺剂量升高,没有增加对THP-1细胞毒性。特地唑胺在AUC0-24≤
90 mg·h/L情况下未下调线粒体酶基因的表达,提示线粒体毒性较小[44]。肝脏移植的肺结核患者连续服用特地唑胺20个月的情况下未出现贫血和胃肠道的不良反应,展现了特地唑胺在长期服用的情况下的安全性较高的特点[47]。Ⅱ期临床试验(临床试验NCT05534750)评估特地唑胺的对初治敏感肺结核患者早期杀菌活性,目前该项试验正处于受试者入组阶段。
1.6 OTB-658
OTB-658是在LZD化学结构上进行优化,引入巯代码林取代基增加其化学结构的位阻,增强了化合物在体内代谢的稳定性[48]。体外活性研究中,OTB-658的MIC低于阳性对照药物LZD,对结核分枝杆菌标准株H37Rv、临床分离敏感和耐药菌株均具有良好的活性。OTB-658具有巨噬细胞内活性,可以进入巨噬细胞内抑制结核分枝杆菌的生长。除此之外,OTB-658自发突变频率较低,约为10-8,提示OTB-658不易产生耐药情况[48-49]。OTB-658体内代谢物OTB-665和OTB-698同样具有抗结核活性,可抑制结核分枝杆菌的生长(MIC分别为0.44和0.93 μg/mL)[50]。
在小鼠结核急、慢性感染模型中,低剂量OTB-658抗结核活性强于中剂量利奈唑胺。OTB-658低剂量组(25 mg/kg)小鼠肺、脾组织中菌落数(colony forming units, CFU)均低于LZD组(50 mg/kg),差异具有统计学意义[48-49]。临床前研究显示化合物OTB-658具有较好的药动学特征,其具有口服吸收快、生物利用度较高、半衰期长等特点。细胞毒性较低,不易引起骨髓抑制的不良反应,外周神经毒性和心脏毒性较低,未发现明显降低白细胞、血小板等血液细胞的不良反应。另外,OTB-658成药性良好,在微粒体中稳定性高,实验中未见对CYP450有抑制作用,不易发生药物间相互作用,适合在今后临床应用中与其他药物组成有效的联合用药方案[48]。
2021年12月,OTB-658的Ia期临床试验(登记号CTR20211895)已完成,该临床试验评价了OTB-658在健康受试者单次给药的耐受性和药动学特点。
1.7 TBI-223
TBI-223抑菌活性与利奈唑胺相当,在小鼠结核感染模型评价药物组合方案实验中,将BPaL组合方案中的利奈唑胺替换为TBI-223,组合方案仍表现出较好的抗结核活性和抑制复发的能力,其抑菌活性与其剂量呈正相关[51]。药代方面,TBI-223在大鼠和犬体内具有较高的口服生物利用度。同时,TBI-223在肝微粒体中具有较高的稳定性,对5种细胞色素酶无抑制和诱导的作用,对可以介导细胞色素酶活化的核受体PXR、CAR和AhR无激活作用[52]。
值得关注的是,TBI-223安全性高,骨髓抑制毒性低,在一项为期28 d的大鼠毒性研究中未观察到大鼠血液学变化或骨髓毒性。它对哺乳动物线粒体蛋白质合成抑制能力低,提示TBI-223在体内发挥抗结核活性过程中,并不干扰人的线粒体蛋白质合成过程,不易产生类似于LZD抑制人线粒体蛋白质合成所引起的不良反应,可以提高临床使用中的安全性[22,52]。目前,TBI-223已完成临床试验I期阶段(NCT03758612)。
2 小结与展望
综上所述,恶唑烷酮类候选物具有许多独特的优势,包括作用靶点独特、不与现有抗结核药物发生交叉耐药、可减少耐药菌株的出现;经过结构改造使得药物与作用靶点的亲和力更强,具有更好的药动学特征,口服吸收迅速,有较高的组织渗透性,可在体内被较快而彻底降解而不易发生蓄积,药物口服生物利用度更高,能够更好地在体内发挥抗结核的活性,也能够增强药物组合方案的抑菌活性;同时增强了安全性,具有较低的线粒体毒性、外周神经毒性低和骨髓抑制毒性,不与药物代谢酶发生相互作用,减少不良反应的发生,这些优点使得恶唑烷酮类药物在抗结核药物领域拥有广阔的开发前景和潜力。
虽然恶唑烷酮类药物已经在抗结核药物研究中取得了很大的进展,但还面临着一些挑战和问题。目前大多数恶唑烷酮类药物在多个临床试验来评估由革兰阳性菌引起的皮肤和软组织感染、败血症、骨髓炎症等疾病的治疗的疗效和安全性,而在治疗耐药结核病方面,多数恶唑烷酮类药物尚处于实验室研究和早期临床试验阶段,主要在健康受试者评价安全性和耐受性,或者是在固定药物组合中探索恶唑烷酮类药物的给药剂量,目前对药物的早期杀菌活性和治疗疗效等相关内容的临床试验还开展较少。未来的研究对恶唑烷酮类药物的毒性、药动学、作用机制和耐药机制等方面的研究需要进一步深入,同时也需要加快推进药物的临床试验的研究进程。
参 考 文 献
WHO. Global tuberculosis report 2022[R]. World Health Organization. 2022.
Slee A M, Wuonola M A, McRipley R J, et al. Oxazolidinones, a new class of synthetic antibacterial agents: In vitro and in vivo activities of DuP 105 and DuP 721[J]. Antimicrob Agents Chemother, 1987, 31(11): 1791-1797.
Ashtekar D R, Costa-Periera R, Shrinivasan T, et al. Oxazolidinones, a new class of synthetic antituberculosis agent. In vitro and in vivo activities of DuP-721 against Mycobacterium tuberculosis[J]. Diagn Microbiol Infect Dis, 1991, 14(6): 465-471.
Livermore D M. Linezolid in vitro: Mechanism and antibacterial spectrum[J]. J Antimicrob Chemother, 2003, 51 Suppl 2(90002): ii9-16.
Eustice D C, Feldman P A, Zajac I, et al. Mechanism of action of DuP 721: Inhibition of an early event during initiation of protein synthesis[J]. Antimicrob Agents Chemother, 1988, 32(8): 1218-1222.
Lin A H, Murray R W, Vidmar T J, et al. The oxazolidinone eperezolid binds to the 50S ribosomal subunit and competes with binding of chloramphenicol and lincomycin[J]. Antimicrob Agents Chemother, 1997, 41(10): 2127-2131.
Swaney S M, Aoki H, Ganoza M C, et al. The oxazolidinone linezolid inhibits initiation of protein synthesis in bacteria[J]. Antimicrob Agents Chemother, 1998, 42(12): 3251-3255.
Kloss P, Xiong L, Shinabarger D L, et al. Resistance mutations in 23 S rRNA identify the site of action of the protein synthesis inhibitor linezolid in the ribosomal peptidyl transferase center[J]. J Mol Biol, 1999, 294(1): 93-101.
Drusano G L, Myrick J, Maynard M, et al. Linezolid kills acid-phase and nonreplicative-persister-phase Mycobacterium tuberculosis in a hollow-fiber infection model[J]. Antimicrob Agents Chemother, 2018, 62(8): AAC.00221-00218.
de Miranda Silva C, Hajihosseini A, Myrick J, et al. Effect of linezolid plus bedaquiline against Mycobacterium tuberculosis in log phase, acid phase, and nonreplicating-persister phase in an in vitro assay[J]. Antimicrob Agents Chemother, 2018, 62(8): AAC.00856-00818.
WHO. WHO consolidated guidelines on drug-resistant tuberculosis treatment[R]. World Health Organization. 2018.
Burki T. BPaL approved for multidrug-resistant tuberculosis[J]. Lancet Infect Dis, 2019, 19(10): 1063-1064.
Burk A, Douzery E J P, Springer M S. The secondary structure of mammalian mitochondrial 16S rRNA molecules: Refinements based on a comparative phylogenetic approach[J]. J Mammalian Evolution, 2002, 9(3): 225-252.
Kishor K, Dhasmana N, Kamble S S, et al. Linezolid induced adverse drug reactions-an update[J]. Curr Drug Metab, 2015, 16(7): 553-559.
Tang S, Yao L, Hao X, et al. Efficacy, safety and tolerability of linezolid for the treatment of XDR-TB: A study in China[J]. Eur Respir J, 2015, 45(1): 161-170.
Bahuguna A and Rawat D S. An overview of new antitubercular drugs, drug candidates, and their targets[J]. Med Res Rev, 2020, 40(1): 263-292.
Barbachyn M R, Hutchinson D K, Brickner S J, et al. Identification of a novel oxazolidinone (U-100480) with potent antimycobacterial activity[J]. J Med Chem, 1996, 39(3): 680-685.
Cynamon M H, Klemens S P, Sharpe C A, et al. Activities of several novel oxazolidinones against Mycobacterium tuberculosis in a murine model[J]. Antimicrob Agents Chemother, 1999, 43(5): 1189-1191.
Williams K N, Stover C K, Zhu T, et al. Promising antituberculosis activity of the oxazolidinone PNU-100480 relative to that of linezolid in a murine model[J]. Antimicrob Agents Chemother, 2009, 53(4): 1314-1319.
Bruinenberg P, Nedelman J, Yang T J, et al. Single ascending-dose study to evaluate the safety, tolerability, and pharmacokinetics of sutezolid in healthy adult subjects[J]. Antimicrob Agents Chemother, 2022, 66(4): e0210821.
Wallis R S, Jakubiec W M, Kumar V, et al. Pharmacokinetics and whole-blood bactericidal activity against Mycobacterium tuberculosis of single doses of PNU-100480 in healthy volunteers[J]. J Infect Dis, 2010, 202(5): 745-751.
Negatu D A, Aragaw W W, Cangialosi J, et al. Side-by-side profiling of oxazolidinones to estimate the therapeutic window against mycobacterial infections[J]. Antimicrob Agents Chemother, 2023: e0165522.
Cho Y L, Jang J. Development of delpazolid for the treatment of tuberculosis[J]. Appl Sci Basel, 2020, 10(7): 2211.
Zong Z, Jing W, Shi J, et al. Comparison of in vitro activity and mic distributions between the novel oxazolidinone delpazolid and linezolid against multidrug-resistant and extensively drug-resistant Mycobacterium tuberculosis in China[J]. Antimicrob Agents Chemother, 2018, 62(8): e00165-18.
Cho Y S, Lim H S, Cho Y L, et al. Multiple-dose safety, tolerability, pharmacokinetics, and pharmacodynamics of oral LCB01-0371 in healthy male volunteers[J]. Clin Ther, 2018, 40(12): 2050-2064.
Kim J S, Kim Y H, Lee S H, et al. Early bactericidal activity of delpazolid (LCB01-0371) in patients with pulmonary tuberculosis[J]. Antimicrob Agents Chemother, 2022, 66(2): e0168421.
Douros A, Grabowski K, Stahlmann R. Drug-drug interactions and safety of linezolid, tedizolid, and other oxazolidinones[J]. Expert Opin Drug Metab Toxicol, 2015, 11(12): 1849-1859.
Wang W, Voss K M, Liu J, et al. Nonclinical evaluation of antibacterial oxazolidinones contezolid and contezolid acefosamil with low serotonergic neurotoxicity[J]. Chem Res Toxicol, 2021, 34(5): 1348-1354.
Shoen C, DeStefano M, Hafkin B, et al. In vitro and in vivo activities of contezolid (MRX-I) against Mycobacterium tuberculosis[J]. Antimicrob Agents Chemother, 2018, 62(8): e00493-18.
Wu X, Meng J, Yuan H, et al. Pharmacokinetics and disposition of contezolid in humans: Resolution of a disproportionate human metabolite for clinical development[J]. Antimicrob Agents Chemother, 2021, 65(11): e0040921.
Li L, Wu H, Chen Y, et al. Population pharmacokinetics study of contezolid (MRX-I), a novel oxazolidinone antibacterial agent, in Chinese patients[J]. Clin Ther, 2020, 42(5): 818-829.
Wu J, Wu H, Wang Y, et al. Tolerability and pharmacokinetics of contezolid at therapeutic and supratherapeutic doses in healthy Chinese subjects, and assessment of contezolid dosing regimens based on pharmacokinetic/pharmacodynamic analysis[J]. Clin Ther, 2019, 41(6): 1164-1174 e4.
Wu J, Wang K, Chen Y, et al. Concentration-response modeling of ECG data from early-phase clinical studies to assess QT prolongation risk of contezolid (MRX-I), an oxazolidinone antibacterial agent[J]. J Pharmacokinet Pharmacodyn, 2019, 46(6): 531-541.
Wu J, Cao G, Wu H, et al. Evaluation of the effect of contezolid (MRX-I) on the corrected QT interval in a randomized, double-blind, placebo- and positive-controlled crossover study in healthy Chinese volunteers[J]. Antimicrob Agents Chemother, 2020, 64(6): e02158-19.
Balasubramanian V, Solapure S, Iyer H, et al. Bactericidal activity and mechanism of action of AZD5847, a novel oxazolidinone for treatment of tuberculosis[J]. Antimicrob Agents Chemother, 2014, 58(1): 495-502.
Balasubramanian V, Solapure S, Shandil R, et al. Pharmacokinetic and pharmacodynamic evaluation of AZD5847 in a mouse model of tuberculosis[J]. Antimicrob Agents Chemother, 2014, 58(7): 4185-4190.
Furin J J, Du Bois J, van Brakel E, et al. Early bactericidal activity of AZD5847 in patients with pulmonary tuberculosis[J]. Antimicrob Agents Chemother, 2016, 60(11): 6591-6599.
Alsultan A, Furin J J, Du Bois J, et al. Population pharmacokinetics of AZD-5847 in adults with pulmonary tuberculosis[J]. Antimicrob Agents Chemother, 2017, 61(10): e01066-01017.
Molina-Torres C A, Barba-Marines A, Valles-Guerra O, et al. Intracellular activity of tedizolid phosphate and ACH-702 versus Mycobacterium tuberculosis infected macrophages[J]. Ann Clin Microbiol Antimicrob, 2014, 13: 13.
Zhanel G G, Love R, Adam H, et al. Tedizolid: A novel oxazolidinone with potent activity against multidrug-resistant Gram-positive pathogens[J]. Drugs, 2015, 75(3): 253-270.
Ruiz P, Causse M, Vaquero M, et al. In vitro activity of tedizolid against Mycobacterium tuberculosis[J]. Antimicrob Agents Chemother, 2019, 63(4): e01939-18.
Aono A, Murase Y, Chikamatsu K, et al. In vitro activity of tedizolid and linezolid against multidrug-resistant Mycobacterium tuberculosis: A comparative study using microdilution broth assay and genomics[J]. Diagn Microbiol Infect Dis, 2022, 103(3): 115714.
Srivastava S, Deshpande D, Nuermberger E, et al. The Sterilizing Effect of Intermittent Tedizolid for Pulmonary Tuberculosis[J]. Clin Infect Dis, 2018, 67(suppl_3): S336-S341.
Deshpande D, Srivastava S, Nuermberger E, et al. Multiparameter responses to tedizolid monotherapy and moxifloxacin combination therapy models of children with intracellular tuberculosis[J]. Clin Infect Dis, 2018, 67(suppl_3): S342-S348.
Srivastava S, Cirrincione K N, Deshpande D, et al. Tedizolid, faropenem, and moxifloxacin combination with potential activity against nonreplicating Mycobacterium tuberculosis[J]. Front Pharmacol, 2020, 11: 616294.
Locke J B, Hilgers M, Shaw K J. Novel ribosomal mutations in Staphylococcus aureus strains identified through selection with the oxazolidinones linezolid and torezolid (TR-700)[J]. Antimicrob Agents Chemother, 2009, 53(12): 5265-5274.
Yuste J R, Serrano-Alonso M, Carmona-Torre F, et al. Efficacy and safety of long-term use of tedizolid after liver transplantation in an adolescent with pulmonary tuberculosis[J]. J Antimicrob Chemother, 2019, 74(9): 2817-2819.
Zhao H, Wang B, Fu L, et al. Discovery of a conformationally constrained oxazolidinone with improved safety and efficacy profiles for the treatment of multidrug-resistant tuberculosis[J]. J Med Chem, 2020, 63(17): 9316-9339.
Guo S, Wang B, Fu L, et al. In vitro and in vivo activity of oxazolidinone candidate OTB-658 against Mycobacterium tuberculosis[J]. Antimicrob Agents Chemother, 2021, 65(11): e0097421.
Jiang J, Liu Y, Liu X, et al. Simultaneous determination of a novel oxazolidinone anti-tuberculosis OTB-658 and its metabolites in monkey blood by LC-MS/MS[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2021, 1167: 122552.
Gordon O, Dikeman D A, Ortines R V, et al. The novel oxazolidinone TBI-223 is effective in three preclinical mouse models of methicillin-resistant Staphylococcus aureus infection[J]. Microbiol Spectr, 2022, 10(5): e0245121.
Mdluli K, Cooper C, Yang T, et al. TBI-223: A safer oxazolidinone in pre-clinical development for tuberculosis[C]. ASM Microbe, 2017.