徐令芝 胡芳举
题目已知实数a,b,c,k满足k=2(a+1a)=3(b+1b)=4(c+1c),且ab+bc+ca=1,求k的值.
该题题干简洁、优美,引起了老师们的热议,受大家的启发,本文结出了该题的三个简解.
解法一:设∑a=x(其中∑表示对a,b,c循环求和),1abc=y,则∑1a=∑ababc=1abc=y∑a2=(∑a)2-2∑ab=x2-2,∑1ab=∑aabc=xy,∑1a2=(∑1a)2-2∑1ab=y2-2xy,∑abc=∑abcc2=abc∑1c2=1y·(y2-2xy)=y-2x,∑abc=∑a2abc=1abc∑a2=(x2-2)y.
由题设得a+1a=k2 ①, b+1b=k3 ②,c+1c=k4 ③.
由①+②+③得∑a+∑1a=1312k,∴x+y=1312k ④.
∵∑(a+1a)2=∑a2+∑1a2+6=(x2-2)+(y2-2xy)+6=x2-2xy+y2+4,∴由①2+②2+③2得∑(a+1a)2=k24+k29+k216=61144k2,∴x2-2xy+y2+4=61144k2 ⑤,又∵(a+1a)(b+1b)(c+1c)=abc+∑abc+∑abc+1abc=1y+(y-2x)+(x2-2)y+y=x2y-2x+1y=(xy-1)2y,∴由①×②×③得(xy-1)2y=k324,∴(xy-1)2=k3y24 ⑥.
由④2-⑤得xy-1=3k216⑦,代入⑥得y=27k32,再代入④得x=23k96,将x,y代入⑦得k=±321515.
解法二:易知a,b,c,k同号,当a,b,c>0时,令a=tanA2,b=tanB2,c=tanC2,A,B,C∈(0,π),∵ab+bc+ca=1,∴c=1-aba+b,∴tanC2=1-tanA2tanB2tanA2+tanB2,∴tanC2=cotA+B2,cotπ-C2=cotA+B2.∴A+B2=kπ+π-C2,k∈Z,∴A+B+C=(2k+1)π,又A+B+C∈(0,3π),∴A+B+C=π.
又a+1a=tanA2+1tanA2=sinA2cosA2+cosA2sinA2=2sinA,同理b+1b=2sinB,c+1c=2sinC,代入k=2(a+1a)=3(b+1b)=4(c+1c)得4sinA=6sinB=8sinC=k,作ΔABC,使AB=8,BC=4,CA=6,則cosC=42+62-822×4×6=-14, ∴sinC=154, ∴k=8sinC=321515.
易知当a,b,c<0时,∴k=-321515,∴k=±321515.
解法三:∵ab+bc+ca=1,∴a+1a=a2+1a=a2+ab+bc+caa=(a+b)(a+c)a,同理b+1b=(b+a)(b+c)b,c+1c=(c+a)(c+b)c,∴k=2(a+b)(a+c)a=3(b+a)(b+c)b=4(c+a)(c+b)c,∴k(a+b)(b+c)(c+a)=2a(b+c)=3b(c+a)=4c(a+b)=2+3+4a(b+c)+b(c+a)+c(a+b)=92(ab+bc+ca)=92,∴a(b+c)=49,b(c+a)=69,c(a+b)=89,又ab+bc+ca=1 ,∴1-bc=49,1-ca=69,1-ab=89,∴bc=59,ca=39,ab=19,∴(abc)2=1593,∴abc=±1527.
又a(b+c)·b(c+a)·c(a+b)=49·69·89=64243,∴(b+c)(c+a)(a+b)=64243abc=±6415135,又k(a+b)(b+c)(c+a)=92 ,∴k=92(a+b)(b+c)(c+a)=±321515.