挑战性问题:激发有效学习的动力

2024-01-05 13:50王珊
中学数学·初中版 2023年9期
关键词:圆周角本课解题

王珊

1 问题提出

挑战性学习内容是基于学生已有的知识经验,立足于学生的“最近发展区”,设计的具有一定难度的学习内容.挑戰性学习内容能够帮助学生拓展视野,锻炼思维能力,促进对知识的理解,引导他们逐渐形成探寻真理的科学精神.那么,在教学中应该如何合理、科学地设计挑战性学习任务呢?倘若课程内容难度较低,就无法激发学生的学习兴趣,难以调动学生的思维和引发学生的深层次思考,不利于促进学生产生内在的学习动力.但是,如果课程内容难度过大,又会挫伤学生学习的信心,也不利于学习活动的开展.

本文中结合“圆的基本性质”复习课的教学片段,探索如何合理设计挑战性问题,促进有效学习,落实教学目标.

2 教学片段

本课是中考一轮复习“圆的基本性质”的专题复习,教学重点是学生能够根据圆的概念构造辅助圆,以及应用垂径定理和圆心角、圆周角定理.作为中考复习课,必然要涉及到相关的几何综合性知识,如三角形、四边形等,因此本课的难点是如何灵活运用几何综合性知识解决问题.

首先,教师引导学生回顾圆的相关概念和性质,然后呈现如下例题.

如图1,在△ABC中,AB=AC,以AC为边在△ABC外侧作等边三角形ACD,连接BD,求∠CBD的度数.

根据例题引导学生发现并掌握“共顶点三等线”的结构,根据“圆的半径处处相等”,构造辅助圆,将圆心角向圆周角进行转化.据此,教师设置挑战性问题:

在四边形ABCD中,AB∥CD,AC=BC=DC=4,BD=6,求AD的长度.

要求:(1)各位同学进行5分钟独立思考;

(2)小组成员之间互相讨论交流,分享观点;

(3)小组之间进行成果展示,互相启发.

教学片段:学生独立思考之后,在小组内进行互相学习和讨论.接下来小组之间互相分享,讨论交流,补充完善,提升认识.在这个学习过程中,教师退到一边,将课堂完全交给学生.

3 问题设计分析

这道挑战性问题的设计看似非常简洁,实则巧妙,教师进行了充分的预设.通过例题的讲解学生已经掌握了“共顶点三等线”的基本结构,学会了构造辅助圆.因此,挑战性问题中的条件及图形均是围绕这一知识点进行设计的,使学生具备探究的知识基础,同时条件发生了一定的变化,激发学生学习的好奇心.在解题过程中,运用的解题方法多样.既可以通过几何方法,如运用垂径定理、借助圆周角定理证明全等实现线段的转化,还可以通过代数方法,运用三角函数计算线段的长度;不仅可以利用相同的弧所对的圆周角相等顺利转化线段,运用勾股定理求解,还可以根据平行弦所夹的弧相等进行线段转化.这些方法几乎包括了有关圆的问题中的所有方法.学生在讨论交流、思考分析、相互启发中巩固了知识,锻炼了思维能力,达到了事半功倍的复习效果.

本题的解法之间不是孤立的,而是具有联系和启发作用.如生2想到的三角函数方法就是在生1推导的基础上联想得到的,使原本复杂繁琐的解题过程变得更加简便.而生3和生4两位同学都是通过延长半径添加辅助线的方法解题,具有相似之处.学生通过组内交流、组间研讨,相互启发,激发了思维的活力,掌握了类比的研究方法,提升了思维的灵活性和发散性.

本课教学中,在重点复习圆的知识的同时,兼顾了全等三角形、三角函数、平行线的性质以及勾股定理等知识的应用,锻炼了学生综合运用知识解决问题的能力.挑战性问题具有一定的难度,学生借助学习共同体完成求解,培养了合作学习的能力,同时思维能力也得到了发展和完善.

4 教学反思

挑战性问题是驱动学生学习的载体,是课堂教学活动展开的线索,也是数学思想和知识的聚焦点,同时也是教师落实教学目标的着力点.在设计挑战性问题时要注意以下原则:

(1)挑战性与基础性相结合

学生是课堂学习的主体,只有激发学生主动学习的动力,才能提升教学效果.传统的课程理念认为问题设计要层层递进,为学生铺设台阶,使学生循序渐进地开展学习,最终到达知识的最高点.这种方法符合学生的认知特点,有利于学生产生心理认同,但是从发展学生关键能力的角度出发,以问题为主线的教学在进行问题设计时可以反其道而行之,由难到易,由综合到分解.

本课通过设计一个宏观的综合挑战性问题,首先让学生在小组中展开交流探讨,当学生遇到困难时,教师引导学生进行分解,探寻解题路径,使学生在思维冲突中获得认知,从而使思维得到充分的锻炼.因此,教师在设计问题时要注意挑战性与基础性相结合,既不能过于简单,要具有一定的挑战性才能够让学生开展深度学习,同时又不能过于超出学习者的认知范围,以免挫伤学生学习的积极性.

(2)联系性与抽象性相结合

数学知识之间具有密切的联系,要从知识之间的联系出发设计挑战性问题,要有利于学生展开观察思考、实验分析和推理论证等数学活动,强化学生对知识的理解,帮助学生建构知识框架.本课通过综合性挑战问题的设计,引导学生在思考问题的过程中,互相激发灵感,通过圆、三角函数、勾股定理等知识之间的联系发现多种解法,真正提升思维能力.

当然数学知识还具有抽象性,课堂教学要引导学生体会知识的形成和发展过程,能够从具体问题中抽象出数学模型并加以运用.挑战性问题的设计应具备概括性,使学生从联想、探究、分析和建模过程中,探究问题本质,体会数学思想,从而真正发展核心素养.

总之,课堂挑战性问题的设计能够使教学过程更加灵动,促进学生自觉地开展学习活动.在教学中问题设计要具有多样性、开放性和探索性,引导学生在学习共同体中开展合作学习,从而打开思路,提升学习效果.

参考文献:

[1]佐藤学.学校的挑战:创建学习共同体[M].钟启泉,译.上海:华东师范大学出版社,2010.

[2]邹新,杨秀成.基于《深化新时代教育评价改革总体方案》的初中数学学考命题[J].中学数学,2022(10):13-14.

[3]蒋海燕.中学数学核心素养培养方略[M].济南:山东人民出版社,2017.

猜你喜欢
圆周角本课解题
用“同样多”解题
设而不求巧解题
用“同样多”解题
运用圆周角定理求角的大小“五结合”
Let’s play football.(部级优课)
人教版八年级物理下册《液体的压强》教学设计
从“听唱读写”四个方面对学生进行节奏训练
圆周角平分线长度的一般性结论
基于圆周角的力学问题
A double inequality for the modulus of the Grötzsch ring in Rn