殷晨 田路明 曹玉芬 董星光 张莹 霍宏亮 齐丹 徐家玉 刘超
摘 要:可溶性糖酸含量是影響梨果品质的经济性状,是人类长期驯化选择的重要性状。在梨果实生长发育、成熟与衰老过程中,糖酸代谢发生一系列生理生化反应,果实中的糖酸含量以及组分变化存在一些规律性。梨果肉主要可溶性糖包括蔗糖、果糖、葡萄糖、山梨醇等,主要可溶性酸包括苹果酸、柠檬酸等,糖酸含量及组分和糖酸比显著影响果实风味。影响梨果肉糖酸含量及组分的因素主要包括品种、光照、激素、肥料、采后技术及砧木等。果实糖酸代谢是十分复杂的生理生化代谢网络的一部分,糖酸是一个由多个基因控制的数量性状,许多关键的功能基因已被验证。目前梨果糖酸研究已在相关酶、糖转运体、转录因子、QTLs分子标记、基因组学、蛋白组学等方面取得重要的研究进展。围绕上述研究,综述了糖酸的主要研究进展,并进行总结和展望,以期为梨果糖酸含量及组分评价、功能基因挖掘和指导梨育种提供参考。
关键词:梨;糖;酸;基因
中图分类号:S661.2 文献标志码:A 文章编号:1009-9980(2023)12-2610-14
收稿日期:2023-09-22 接受日期:2023-11-02
基金项目:国家现代农业产业技术体系(CARS-28-01);中国农业科学院科技创新工程(CAAS-ASTIP-RIP);国家科技资源共享服务平台项目(NHGRC2023-NH02-1)
作者简介:殷晨,女,在读硕士研究生,研究方向为梨种质资源。E-mail:yinchen4869@163.com
*通信作者 Author for correspondence. E-mail:tianluming@caas.cn;E-mail:yfcaas@263.net
Research progress in sugar and acid in pear fruit
YIN Chen, TIAN Luming*, CAO Yufen*, DONG Xingguang, ZHANG Ying, HUO Hongliang, QI Dan, XU Jiayu, LIU Chao
(Institute of Pomology, Chinese Academy of Agricultural Sciences/Key Laboratory of Horticultural Crop Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Xingcheng 125100, Liaoning, China)
Abstract: Pears are the third temperate fruit crop in the world and are widely popular due to their unique taste. The contents of soluble sugars and organic acids in pear fruits are very important to fruit quality. The differences in the content and composition of soluble sugars and organic acids in the fruit contribute to the different flavors of different pear varieties. During the growth, development, maturation and aging of pear fruits, a series of physiological and biochemical reactions occur through sugar and acid metabolism, and there are some patterns in the sugar and acid content and component changes in the fruit. Research on the contents of soluble sugars and organic acids in pear fruits has emerged endlessly, and a significant progress has been made. This article will provide an overview of the research on the sugar and acid contents in pear fruits. It mainly consists of four aspects: research progress in sugar and acid contents during fruit growth and development, sugar and acid content in post harvest pear fruits, factors affecting sugar and acid content and molecular mechanisms of sugar and acid change. During fruit growth and development, organic acids are formed in the early stages of fruit development and gradually decrease as the fruits mature. The organic acid components in pear fruits mainly include malic acid, citric acid, quinic acid, oxalic acid, shikimic acid and tartaric acid. Pear varieties are divided into malic acid dominant and citric acid dominant varieties based on the content of each organic acid component in the fruit. With Asian pear varieties, the main organic acid found in most pear varieties is malic acid, while with European pear varieties, the main organic acid found in most pear varieties is citric acid. Malic acid shows a first increasing and then decreasing trend throughout the entire growth and development process, while citric acid dominant varieties will undergo a transition of malic acid decreasing and citric acid increasing in the middle stage of fruit development. Malic acid is the main factor causing significant differences between varieties. The total soluble sugar content is relatively low in the early stage of fruit development and gradually increases with fruit maturity. The soluble sugar components present in pear fruits mainly include sorbitol, fructose, glucose and sucrose. Most pear varieties have sorbitol as the main sugar in the young fruit, while fructose is the main sugar in the mature fruit. There are significant differences in the proportion of sugar components at different developmental stages, with an increase in fructose content and a significant decrease in sorbitol content during maturity. Sucrose is an important factor causing differences among varieties. Pears belong to the respiratory climacteric type of fruit. During storage, fructose and glucose contents in the fruit gradually increase, sorbitol and malic acid contents gradually decrease, and sucrose first increase and then decrease. Under low temperature storage conditions, the contents of fructose, glucose and sucrose increase until they gradually decrease after 90 days. The organic acid contents show a trend of first decreasing and then stabilizing. Although the total soluble sugar content of refrigerated fruits is higher than that of unfrozen fruits, long-term refrigeration can lead to a deterioration and decrease in sucrose content in the fruits. Bagging treatment could reduce the content of total soluble sugar and reduce the content of malic acid. The application of different plant hormones or growth regulators could affect the sugar and acid contents in pear fruits. Ethylene treatment could increase the soluble sugar content and reduce the titratable acid content. GA treatment could increase the contents of sucrose and malic acid. IAA and ABA treatment could promote the accumulation of sorbitol, while MT treatment could increase the content of sucrose and sorbitol. Applying potassium and calcium fertilizers could increase the accumulation of glucose, fructose, sorbitol and sucrose in fruits. 1-MCP treatment could delay and inhibit the downward trend of organic acids, but also delay the increase of total soluble sugar content. The sugar and acid contents in pear fruits are a quantitative trait controlled by multiple genes. With the rapid development of genomics, many key gene functions has been verified. PbCPK28 promotes the phosphorylation of PbTST4 and PbVHA-A1, promoting sugar transport and storage in vacuoles. PbrAc-Inv1 and PbrII5 are involved in the degradation of sucrose. Overexpression of PbPH5 can significantly increase the malic acid content. The sugar transporter family genes involved in sugar transport in pear fruits include PbSWEETs, PbSOTs, PbTMTs, PbSUTs, PbPLTs and PbTSTs. Overexpression of PuSWEET15 increases sucrose content, while silencing PuSWEET15 reduces sucrose content. PbTMT4 is an important contributor to the accumulation of fructose, glucose and sucrose in pear fruits. By developing sugar related QTL markers, two individual sugar content regions associated with acid invertase genes have been identified in linkage groups LG1 and LG7. This article has mainly summarized and reviewed the research papers related to the sugar and acid contents of pear fruit in recent years around these four parts, in order to provide reference for the study on sugar and acid contents in the pear fruit, component evaluation, functional gene mining and new variety breeding, and to propose prospects for future research directions.
Key words: Pear; Sugar; Acid; Gene
梨(Pyrus L.)是世界第三大温带水果,有着悠久的栽培历史,是广受欢迎的水果。梨栽培品种果实性状与野生种果实性状的差异是人类选择的结果[1],梨品种果实糖酸含量是长期驯化的性状[2-3]。可溶性糖在梨果的生长、发育和果实品质中起着重要的作用[4],果实糖酸比的差异严重影响梨果实风味[1]。梨果中可溶性糖酸种类较多,在库尔勒香梨果肉初生代谢中共检测到蔗糖、果糖、葡萄糖、山梨醇等共17种糖以及苹果酸、柠檬酸等共8种有机酸,总糖酸比为71.49[5]。在比较可溶性糖组分含量时,栽培梨和野生梨成熟时果糖含量差异最大[4]。总糖和个别糖含量是形成果肉甜味的原因,果肉的单个糖含量代表了风味方面的重要信息[6]。果实中糖酸含量和糖酸比是影响梨果实风味品质的重要因素,也是梨新品种选育的重要评价指标[7]。在梨的杂交育种实践中,多数个体因表现出低糖高酸的特征而被淘汰。日本梨品种成熟果实中的个体含糖量有很大的差异,提高总糖含量和甜度高的糖组分含量是日本梨育种计划的主要目标[8]。
高等植物中的果实糖积累是一个复杂的过程,涉及酶对糖代谢的调节,这些酶受激素的调节;已知酶和激素调节因环境因素和基因型而异[9]。山梨醇属于糖醇类,是梨属植物主要的光合产物,也是梨糖运输的主要形式,由叶片转运到果实的山梨醇大部分转化合成为果糖和葡萄糖,可溶性糖的转运由糖转运体蛋白介导[10-11]。三羧酸(TCA)循环和糖酵解为果实中有机酸提供了所必需的成分,几种酶参与TCA循环,包括磷酸烯醇式丙酮酸羧化酶(PEPC)、苹果酸脱氢酶(MDH)、苹果酸酶(NADP-ME)、乌头酸酶(ACO)、NAD依赖型异柠檬酸脱氢酶(NAD-IDH)和琥珀酸脱氢酶(SDH)等[3]。梨果中的有机酸主要储存在液泡中,有机酸的转运由许多蛋白质介导[12]。糖酸含量是由多个基因控制的数量性状,是一个复杂的代谢网络的一部分[3-4]。梨品种果实糖酸组分含量形成的差异,以及与野生种间的差异,仍需要更深入的分子机制研究去解释。
随着现代化仪器的快速发展,研究人员利用高效液相色谱(HPLC)等精准测定果实可溶性糖酸组分,加之分子生物学和基因组测序等技术的迅速更新,对果实糖酸表型和基因型的精准评价成为可能。近年来关于梨果实糖酸的相关研究已经取得重要成果,主要涉及梨果实发育过程中糖酸含量研究、梨果采后室温和低温糖酸含量研究、影响梨果糖酸含量的因素研究,以及相关基因组、转录组、蛋白组、基因和分子标记开发等分子机制研究。笔者在本文中围绕以上所述的几个方面进行综述分析,并进行总结和展望,以期为未来梨果实糖酸研究和梨新品种选育提供参考。
1 梨果实生长发育过程中糖酸含量研究
大多数研究表明,在梨果实生长发育过程中,果实中的有机酸通常在果实发育早期形成,随着果实成熟逐渐减少;而可溶性总糖含量在果实发育前期较少,发育后期呈增加趋势。在玉露香梨果实生长发育过程中,总糖含量呈现出“慢-快-慢-快”的上升趋势[10]。大部分梨品种幼果期果实中的糖以山梨醇为主,成熟果实中的糖以果糖为主[10,13-16],而成熟的云红梨1号果实中山梨糖醇仍是含量最多的糖,其次为果糖、蔗糖和葡萄糖[13]。杨志军等[17]研究鸭梨×京白梨杂交后代高糖个体和低糖个体的果实糖动态变化,发现发育前期总糖含量逐渐升高,其中果糖含量最高,山梨醇含量次之,蔗糖含量相对较低。成熟时,高糖个体的果糖含量显著低于低糖个体,并且蔗糖、葡萄糖、山梨醇乃至总糖含量均显著高于低糖个体。潘俨等[18]研究库尔勒香梨果实发育过程中糖含量变化,分别测定果心、果肉和果皮的4种可溶性糖组分含量,发现不同发育阶段糖组分比例有明显差异,成熟期均表现为果糖含量比例升高,山梨醇含量比例明显下降。南红梨是南果梨的一个红色芽变品种,南红梨果实发育过程中蔗糖含量普遍高于南果梨,采收期南红梨果实中蔗糖含量约为南果梨果实的2倍[14]。采用黄冠梨和鸭梨对比发现,黄冠梨果实中的糖代谢过程为典型的“山梨醇-淀粉-可溶性糖”中间模式,鸭梨果实中糖代谢过程为典型的“山梨醇-蔗糖-淀粉-可溶性糖”中间模式[19]。
在梨果实发育过程中有机酸含量呈先上升后逐渐下降的趋势[10,20-22]。霍月青等[23]研究4个砂梨(P. pyrifolia Nakai)品种有机酸含量,总有机酸含量随果实增长呈下降趋势,主要是奎尼酸下降幅度很大,苹果酸呈先上升后下降的抛物线变化趋势,而以柠檬酸占优势型的品种,在果实发育的中期会发生苹果酸下降而柠檬酸升高的转变。库尔勒香梨果实在不同阶段的有机酸含量变化差异明显,在5月份时苹果酸含量(ρ)最高,达到1.198 g·L-1,柠檬酸含量达到0.476 g·L-1,酒石酸达到0.382 g·L-1 [22]。李甲明等[24]研究鸭梨×京白梨杂交后代高酸个体和低酸个体的果实有机酸动态变化,高酸个体属于苹果酸优势型,低酸个体属于柠檬酸优势型,且成熟时两者在总酸含量上表现出的差异主要是苹果酸含量的差异所致。刘清鹤等[25]研究鲁秀梨果实的有机酸动态变化,果心、果肉、果皮不同部位有机酸组分含量不同,有机酸含量随着果实成熟逐渐下降,果皮部位有机酸含量低于果肉和近果心部位,后二者相似。Wu等[26]对193种梨成熟果实进行研究,发现各有机酸组分在梨果实中含量从高到低依次为苹果酸>柠檬酸>奎尼酸>草酸>莽草酸,总酸含量分别与苹果酸、柠檬酸含量存在显著的正相关性。果实中糖酸含量之间呈显著的负相关性[1]。
2 采后梨果实糖酸含量研究
2.1 室温贮藏
果实在贮藏过程中的成熟与衰老以及糖酸含量变化是一系列生理生化反应所共同调控的结果。梨是呼吸跃变型果实,采后贮藏期间的糖损失是果实自身呼吸消耗和蔗糖酶活性变化的结果[27]。Wang等[28]研究早红考密斯成熟梨果实采后糖含量,采后果实中果糖是主要的糖,其次是葡萄糖、蔗糖和山梨醇;随着后熟过程推进,果实中果糖和葡萄糖含量逐渐增加,山梨醇含量逐渐减少,蔗糖含量先升高后降低。Wang等[29]研究丰水梨亦发现,苹果酸含量在贮藏期间下降。丰水梨在室温贮藏过程中,果糖和葡萄糖逐渐积累;蔗糖、山梨醇和苹果酸含量呈下降趋势[30]。Xu等[31]研究早熟山梨(P. ussuriensis)在室温下0~8 d后熟过程中的代谢产物,认为可溶性糖类含量的变化不是影响梨果实后熟的原因,果胶、脂质代谢物和一些激素如脫落酸(ABA)等变化影响梨果实的后熟和软化。
2.2 低温贮藏
低温环境有利于延缓水果各种生理代谢,延缓果实品质变化,从而延长水果的保质期。Zhao等[27]研究冷藏中7个梨品种果实糖代谢发现,果糖是主要的糖,占总糖的60%以上,其次是葡萄糖和蔗糖;在冷藏过程中,果糖、葡萄糖、蔗糖和可溶性固形物含量增加,至90 d后逐渐下降。Lwin等[32]比较圆黄梨大果(550~950 g)和小果(250~350 g)的糖含量,在冷藏和货架期,大果的葡萄糖和果糖含量高于小果,而蔗糖和山梨醇含量低于小果。Dias等[33]比较Rocha梨果实低温贮藏1周和1个月后的糖酸含量,两批果实之间的蔗糖和果糖存在显著差异,第2批的可溶性糖含量较高,葡萄糖和山梨醇含量几乎没有随时间的变化;第2批样品中的苹果酸含量显著升高,且在货架期的开始和结束之间略有增加。黄丽等[34]以玉露香梨、红香酥梨和酥梨为试材,研究冷藏期(0~240 d)糖酸含量变化,3种梨的可溶性糖含量均表现为先升高后降低趋于稳定的趋势,红香酥梨和酥梨60 d达到最高,玉露香梨于180 d达到最高,不同糖组分含量变化不同;玉露香梨和酥梨总有机酸含量变化动态一致,均先下降后趋于稳定,红香酥梨总有机酸含量先上升后下降,苹果酸是3种梨果实中含量最高的有机酸,其变化动态与总有机酸相似。在低温贮藏期(0~180 d)鲁秀梨果实可溶性总糖含量整体呈先上升后下降趋势,在贮藏30 d时可溶性总糖含量最高,不同糖组分含量的变化不同[25]。在低温(1 ℃)贮藏时鲁秀梨果实有机酸含量呈先下降后稳定趋势,有机酸组分含量变化有所不同;在贮藏60 d时,有机酸含量最低,之后随着贮藏期延长,有机酸含量轻微上升后趋于稳定[25]。Wang等[35]研究发现,(0±0.5) ℃、85%~90% RH低温贮藏可有效延长南果梨采后贮藏期,冷藏果实的可溶性总糖含量高于未冷藏果实,但长期冷藏会导致果实中的蔗糖含量下降。
3 影响梨果糖酸含量的因素
3.1 品種
梨果实中糖酸含量及其组分的不均匀分布,造就了不同品种果实的风味差异。不同栽培品种梨果实中总糖和总酸及其组分含量不同[25,36-38],根据苹果酸和柠檬酸比值可将不同品种划分为苹果酸优势型和柠檬酸优势型[8,10,39]。霍月青等[23]研究70个砂梨成熟果实的有机酸含量,将砂梨品种分为苹果酸优势型和柠檬酸优势型两类,其中选育品种基本上是苹果酸型的,柠檬酸型的基本是地方品种;选育品种的苹果酸含量与比率变化幅度较地方品种小,且含量显著高于地方品种,选育品种的柠檬酸含量与比率都显著低于地方品种。姚改芳等[40]对10个不同栽培种的梨果进行糖酸分析,发现白梨(P. bretschneideri Rehd.)和砂梨的总糖和总酸含量都较低,秋子梨(P. ussuriensis Maxim)的总糖和总酸含量都较高,新疆梨(P. sinkiangensis Yu)的总糖含量相对较高,总酸含量居中,西洋梨(P. communis L.)的总糖含量较高,总酸含量最高。姚改芳等[41]分析5个栽培种的98个梨品种果实糖酸含量,发现西洋梨的总酸含量最高,其次是秋子梨、白梨和砂梨,含量最低的是新疆梨,大部分西洋梨品种是柠檬酸优势型。李甲明等[20]将茌梨、鸭梨和八里香这3个品种进行对比,发现在果实成熟时,茌梨的总酸含量最高,鸭梨居中,八里香最低,苹果酸是引起品种间显著差异的主要因素。Akagi?等[6]测定10个西洋梨品种成熟果实可溶性糖含量,结果表明果糖含量最高,其次是山梨醇和葡萄糖含量,蔗糖含量最低。Gao等[42]以翠冠梨为试材,发现含有较高的柠檬酸是造成果实核心酸的原因。张莹等[15]研究发现,秋子梨栽培品种南果梨和野生资源东宁山梨1果实之间糖和淀粉的积累规律存在差异。安景舒等[43]研究发现,不同品种间,果糖和葡萄糖的含量相对稳定,蔗糖和山梨醇含量变化较大。
3.2 光照
光照是影响梨树光合作用的重要因素,果实套袋可改变果实生长发育的微环境,影响果实糖酸代谢[44-45]。柯凡君等[46]研究套纸袋对翠冠梨和黄金梨果实的糖组分含量变化,两个品种的套袋果实在发育过程中糖组分变化趋势与对照基本一致,套袋果实可溶性糖含量均低于对照但差异不显著,对不同糖组分影响有差异。李芳芳等[44]研究两种果袋对库尔勒香梨可溶性糖含量的影响,套袋降低了库尔勒香梨果实可溶性糖含量,但不影响其变化规律,在果实成熟时,套紫色膜袋对蔗糖、葡萄糖和山梨醇含量的影响比套纸袋大。李芳芳等[47]研究表明,库尔勒香梨果实套紫色塑料膜袋后,各可溶性糖及总糖含量均无显著变化,总酸和苹果酸含量显著减少,其他有机酸含量变化差异不显著;果实套纸袋后,蔗糖和山梨醇含量显著减少,柠檬酸含量显著增加,其他酸含量变化差异不显著。孔佳君等[48]利用红、橙、绿、蓝、紫色滤光膜单层果袋处理砀山酥梨,套袋果实可溶性糖含量均显著低于对照,红色套袋果实可溶性糖含量最低,相比对照减少31.27%,且紫色和橙色果袋内果实的可溶性糖含量较高。李刚波等[49-50]对苏翠1号研究发现,不同时期套袋,果实中可溶性固形物含量和糖酸比明显低于对照,套袋果实的山梨醇含量并没有显著差异,但蔗糖、葡萄糖、果糖含量明显降低,同时对苹果酸、奎尼酸和总酸含量影响较大,对柠檬酸含量影响不大[51]。不同果袋的效果亦有差别,套黄白纸袋果实的可溶性固形物含量、糖酸比和总糖含量都高于复合纸袋果实,果实综合品质更好[49-51]。徐锴等[52]以红色梨为试材,研究发现套袋后果实中的可溶性固形物含量增加,褐色和蓝色果袋处理降低了果实糖酸比。Wang等[45]对茌梨研究发现,与未套袋果实相比,聚乙烯袋和无纺布袋处理都不利于可溶性糖积累。吴瑞媛等[53]研究表明,铺设反光膜可以提高翠冠梨果实单果质量,促进果实糖积累。
3.3 激素
梨果实中糖酸代谢是一个复杂的过程,植物激素参与相关的调控[54],外用激素可以调节果实糖酸含量[55-57]。韩彦肖等[55]利用不同生长调节剂处理黄冠梨,果实成熟时,赤霉素(GA3和GA4+7)处理果实的蔗糖含量显著高于对照;GA3处理果实的苹果酸和有机酸含量显著高于对照,萘乙酸(NAA)、生长素(IAA)和GA4 + 7处理果实与对照无显著差异,不同类型生长调节剂处理对果实中莽草酸含量无显著影响。李节法等[58]用2.7% GA3+4处理花后25 d的翠冠梨,果实膨大前期,果实以山梨糖醇为主,显著高于对照;后期果糖含量上升,山梨糖醇含量下降,GA处理果实的总糖含量显著高于对照。施春晖等[56]对翠冠梨喷施适宜浓度的NAA、NAA-Na两种调节剂,与对照相比,具有高效疏果作用,提高了果实中蔗糖含量,但是NAA与NAA-Na调节剂之间差异不显著。Gu等[54]对翠冠梨施用10 mg·L?1 IAA或1 mg·L?1 ABA,促进梨果实中山梨醇积累。Tian等[59]研究库尔勒香梨和其芽变早美香梨的激素、糖含量与果实大小的关系,发育过程中葡萄糖和山梨糖醇的差异较大,早美香梨在整个细胞分裂过程中积累了大量的山梨糖醇,葡萄糖、山糖醇含量与细胞数呈正相关,葡萄糖、山梨醇、玉米素、脱落酸及内源激素的比例可能与库尔勒香梨和早美香梨的细胞分裂有关。Liu等[9]利用100 μmol·L?1褪黑素(MT)处理早酥梨,发现在果实成熟期间,MT增加了可溶性糖含量,特别是蔗糖和山梨糖醇含量,而MT对果实的有机酸含量没有影响。Wang等[60]利用100 μmol·L?1 MT处理接种轮纹病菌(Botryosphaeria dothidea)的翠冠梨,外源褪黑素处理能提高梨果实中可溶性糖和有机酸含量,增强轮纹病抗性。Wang等[61]利用10 mmol·L?1甜菜碱(GB)处理南果梨,与对照相比,低温贮藏后果实蔗糖含量升高,果糖和葡萄糖含量降低。邵白俊杰等[62]在大蕾期用300 mg·L-1乙烯利处理库尔勒香梨对果实品质影响最大,使脱萼果的可溶性固形物和可溶性糖含量与对照相比分别显著提高12.03%和10.22%,可滴定酸含量则显著降低19.75%。韩春红等[57]对3个红皮梨品种叶面喷施0.5、1.0、2.0 mmol·L-1的茉莉酸甲酯(MeJA)和二氢茉莉酸内酯(PDJ),结果表明成熟期果实果糖、葡萄糖、山梨醇、总糖含量及糖酸比上升,但果实总酸含量下降。
3.4 肥料
在梨树上施用有机肥和矿质营养能显著提高果实品质和产量,有助于改善糖酸含量比例[63-64]。Shen等[63]利用不同浓度梯度氧化钾(K2O)肥处理黄冠梨,连续两年与对照相比,增加钾的施用量促进了葡萄糖、果糖、山梨醇和蔗糖在果实中积累。高钾促进光合作用,增加果实中山梨醇、蔗糖、果糖含量。果实成熟时,低钾会抑制蔗糖和有机酸代谢,但能促进果糖和葡萄糖积累[65]。周君等[66-67]在黄金梨幼果期进行喷钙处理,与对照相比,氨基酸钙和硝酸钙[Ca(NO3)2]处理的果实均能提高可溶性固形物含量和糖酸比,氨基酸钙效果更好。魏树伟等[68]利用4%氯化钙(CaCl2)处理南果梨,结果显示,钙处理提高了南果梨果实中可溶性糖含量,其中商熟期前5 d时钙处理总糖含量较对照提高了4.68%,果实中有机酸含量较对照提高了49.93%;商熟期可溶性糖含量较对照提高了8.43%,后熟5 d时可溶性糖含量较对照提高了10.97%,而果实中的有机酸含量低于对照。Pessoa等[69]以不同浓度Ca(NO3)2和CaCl2喷施Rocha梨,与对照相比,采收时钙处理梨果中蔗糖、葡萄糖、果糖和山梨醇含量不受影响,贮藏后钙处理果实中可溶性糖含量保持较高水平。Xu等[70]以爱甘水梨为试材,研究发现,与普通复合肥料相比,缓释肥增加了果实可溶性固形物含量,袋控缓释肥显著提高了糖酸比。Wang等[64]以砂梨新品种初夏绿为试材,发现与普通化肥相比,生物有机肥和有机肥处理均可以增加梨果实中蔗糖含量,降低果糖和葡萄糖含量,并促进柠檬酸的降解。刘松忠等[71]研究表明,施用堆肥+叶片喷施氨基酸肥或腐熟动物废弃料,可显著提高黄金梨果实总糖、蔗糖、果糖和葡萄糖含量。邵微等[72]利用不同有机酸+氮磷钾肥配施处理红宝石梨,以单独用氮磷钾肥为对照处理,结果表明,不同浓度苹果酸、柠檬酸及草酸与氮磷钾肥配施处理的可溶性糖含量显著高于对照,其中5%苹果酸+氮磷钾肥配施显著提高了梨的可溶性固形物含量与糖酸比,果实品质的提升效果最佳。丁易飞等[73]设置4个氮素水平(165、330、660和990 kg·hm-2)处理寿新水梨,梨果实可溶性固形物、可溶性糖含量及糖酸比随施氮量提高呈先增加后降低的趋势,最大值均出现在330 kg·hm-2处理,果实中山梨醇含量比对照分别提高了25.3%和90.9%。张海棠等[74]研究不同钾镁配比对早酥梨果实糖酸组分含量的影响,钾镁配比为10.76时,糖酸比最高,早酥梨果实中果糖含量最高,占总糖含量的52.52%,为果糖积累型;早酥梨为柠檬酸优势型,随钾镁配比的提高,苹果酸含量先增加后降低,柠檬酸含量的变化趋势与苹果酸完全相反。
3.5 1-MCP处理
1-甲基环丙烯(1-MCP)是一种有效的乙烯拮抗剂,在贮藏过程中具有保持果实质量的潜力,已被用于维持许多呼吸跃变果实的储存质量和延长其保质期[75-76]。1-MCP處理南果梨延缓了可溶性固形物和可滴定酸的损失,并显著抑制可滴定酸含量的下降,但也延缓了总可溶性固形物含量的增加[76]。Lwin等[77]采前1周用1-MCP处理圆黄梨,与对照相比,采收时蔗糖含量上升,山梨醇含量降低,冷藏3个月后果实可溶性固形物含量高于未处理的对照,不同糖组分含量变化不一致。Lwin等[78]利用1-MCP采前处理Chuhwangbae梨,1-MCP处理的果实的蔗糖水平高于未处理的果实,冷藏后及货架期果实可溶性固形物含量高于未处理对照。Lwin等[79]利用1-MCP采后处理圆黄梨,冷藏6个月后与未处理的对照组相比,果糖、葡萄糖和苹果酸含量降低,但在储存的后半段保持了更高的蔗糖和山梨醇含量。Tokala等[75]以1-MCP处理Gold Rush梨果实,冷藏后发现,1-MCP处理的果实可溶性固形物含量较高,并且果糖和山梨醇含量高,而蔗糖含量低;有机酸含量没有明显变化。Latt等[80]利用1-MCP处理新品种Greensis梨,发现与对照相比果实中果糖、葡萄糖含量减少,而果实中蔗糖含量的提高。Wang等[29]利用1-MCP处理成熟丰水梨,与对照相比,熏蒸显著抑制了丰水梨的质量恶化,保持了较高的苹果酸含量。Bai等[76]用1-MCP处理成熟南果梨,室温货架期1-MCP处理果实柠檬酸含量高于对照,两者均呈降低趋势。
3.6 其他
矮化砧木影响接穗的生长,对提高果实质量和产量很重要[81]。Wang等[82]研究发现,嫁接云南榅桲(Cydonia oblonga Mill.)的成熟早酥梨果实含糖量高于嫁接杜梨(P. betulifolia)。徐文清等[83]利用川梨(P. pashia)、豆梨(P. calleryana)和杜梨为砧木嫁接丰水梨,结果表明不同砧木对接穗品种丰水梨果实中有机酸代谢具有调控作用,杜梨可以降低丰水梨果实中柠檬酸的含量,导致苹果酸含量与柠檬酸含量的比值升高。Liu等[7]连续2 a(年)测定砀山酥梨与丰水梨正反交后代群体果实糖酸含量,大部分个体的酸和糖含量、总酸含量和总糖含量均高于砀山酥梨,而低于丰水梨,趋于平均水平;母系亲本的选择对酸的含量有重要影响,父母本对糖组分含量和总糖含量没有显著影响。Duan等[84]研究发现,0.8 mmol·L-1 ATP处理可以抑制南果梨果实中可溶性总糖含量的下降。Wang等[85]以10% CO2处理鲜切翠冠梨,发现可以促进可溶性固形物的积累,加速贮藏末期葡萄糖、果糖、山梨醇和蔗糖的积累,分别比对照提高12.58%、13.86%、24.7%和13.9% 。
4 梨果糖酸分子机制研究
4.1 基因研究
糖含量是一个由多个基因控制的数量性状,许多关键的基因功能已被验证。李节法等[58]研究表明,外源赤霉素(GA)处理翠冠梨后,GA处理显著提高梨果肉和果心组织中的可溶性糖含量,GA诱导糖代谢相关酶基因的表达,如促进S6PDH、SS、SI和SPS基因表达上调,而前期抑制NAD依赖型山梨醇脱氢酶基因(NAD-SDH)的表达,并在果心和果肉中存在空间表达差异。丁易飞等[73]研究表明,成熟期330 kg·hm-2氮素水平处理显著上调果实中NAD-SDH3基因的表达,有利于山梨醇的分解,提高成熟期果实糖含量。Liu等[9]研究表明,转化酶基因Pbinvertase1/2在MT处理的果实中的表达水平较低,导致酶活性较低,PbSPS1/2/3表达提高促进蔗糖磷酸合成酶(SPS)的活性提高。Wang等[45]研究表明,茌梨果实套袋处理降低了光照度,SPS基因表达水平降低,抑制蔗糖的合成。Abdullah等[86]报道了30个蔗糖合酶(SS)基因,其中PbSS30、PbSS24和PbSS15在梨果实发育阶段具有潜在的作用。Li等[4]研究钙依赖性蛋白激酶(PbCPK28),PbCPK28表达量的升高导致了梨果实中果糖水平的显著升高。Ma等[30]研究发现,酸性转化酶1(PbrAc-Inv1)和转化酶抑制剂5(PbrII5)参与蔗糖降解,PbrII5可以与液泡中的PbrAc-Inv1相互作用,调节液泡转化酶活性,从而改变梨果实的糖组成。Shen等[65]研究表明,高浓度钾肥能提高叶片的光合效率,而低浓度钾肥诱导参与山梨醇代谢的3个SDH和2个S6PDH基因表达上调,促进果糖的积累。
糖转运体(ST)有不同类型,梨相关的糖转运家族基因如PbSOTs[87]、PbSWEETs[11,88-89]、PbTMTs[90-91]、PbSUTs[92]、PbPLTs[93]、PbTSTs[4]等。Li等[88]研究表明,PbSWEET5表达下调,与蔗糖水平呈负相关,说明PbSWEET5可能对蔗糖外排和调节果实糖含量起关键作用。Ni等[89]研究表明,PbSWEET4可以促进糖从叶片流向其他器官,过表达PbSWEET4可显著降低叶片中蔗糖的含量。Li等[94]发现PuSWEET15在梨果实中运输蔗糖,过表达PuSWEET15会增加蔗糖含量,而沉默PuSWEET15则会降低蔗糖含量。Qin等[95]研究证实了液泡质体单糖转运体相关基因PbrTMT1的功能,该基因负责促进梨果实中果糖的积累。Yu等[11]研究表明,PbSOT6/20的表达模式与梨果实中山梨醇积累模式的相关性更强,低质量分数(100 mg·g-1)的外源山梨醇诱导了PbSOT6/20的表达,而在叶片中不表达。Li等[93]研究表明5个糖转运体基因(PbTMT2、PbTMT3、PbTMT4、PbPLT9和PbPLT22)与梨果实发育和成熟过程中的糖积累水平密切相关,可能比其他基因发挥更重要的作用。Cheng等[90]研究表明,PbTMT4被认为是梨果中果糖、葡萄糖和蔗糖积累的重要贡献者,转此基因的成熟番茄的葡萄糖和果糖含量比对照植株增加了约32%和21%。Wang等[64]研究表明,施用有机肥和生物有机肥后,糖转运体基因的转录丰度均显著增加,如SOT、SUT14、UDP-GLUT4、UDP-SUT、SUC4、SUT7、SWEET10和SWEET15,促进糖的运输,两种肥料均促进果实中蔗糖积累和柠檬酸降解。Wang等[82]研究发现,嫁接榅桲的早酥梨基因PbSWEET6表达量高于嫁接杜梨的,过表达基因PbSWEET6的转基因番茄果实和梨果实愈伤组织中蔗糖和葡萄糖含量增加。
大多数梨品种果实中主要的有机酸是苹果酸和柠檬酸,目前相关功能基因的研究明显少于糖的研究。Wang等[29]研究发现,1-MCP熏蒸可上调基因cyNAD-MDH的表达和cyNAD-MDH活性,抑制cyNADP-ME活性,从而使储藏的丰水梨保持更高的苹果酸丰度。Song等[12]选择5个梨品种研究,发现PbPH5过表达显著增加了苹果酸含量,相比之下,通过RNA干扰沉默基因PbPH5则显著降低了其转录水平和梨果实中苹果酸含量。Li等[3]比较研究高酸和低酸两个梨品种,结果表明,三羧酸循环(TCA)相关通路和转运蛋白基因在有机酸积累中发挥重要作用,12个TCA相关基因和3个转运体被筛选为候選基因。
4.2 转录因子研究
转录因子(TF)在调节碳水化合物的分配和糖酸的代谢中发挥重要作用,调控梨果糖酸的部分转录因子功能已被验证。Lü等[96]研究发现,高蔗糖含量参与了C2H2、BZIP、GRAS、MADS和WRKY的上调,它们与蔗糖生物合成相关的靶基因启动子上的特定结合位点相互作用。Li等[94]研究发现,转录因子PuWRKY31与PuSWEET15基因启动子结合,诱导其表达,PuWRKY31的高表达导致南果梨芽变品种的蔗糖含量高于南果梨。Li等[97]利用外源性蔗糖处理南果梨,蔗糖激活PuWRKY31表达,PuWRKY31的表达增强了PuACS1a和PuACO1的表达,从而导致梨果实中乙烯产量的增加,表明蔗糖调节梨果中乙烯生物合成。Li等[3]研究高酸梨果酸代谢TCA通路相关的转录因子中,8个MYB、6个bHLH和6个NAC调控作用突出。Lin等[98]从杜梨中筛选到转录调控基因PbWRKY40,通过超表达和沉默该基因,研究表明,PbWRKY40至少部分地通过调控PbVHA-B1的表达,在耐盐性和有机酸积累方面发挥作用。
4.3 基因组学研究
基因组测序和基因组学的快速发展为大规模梨基因组测序和分析提供了便利,使表型和基因型的比较分析研究取得了重要进展。Li等[93]研究ST基因家族的染色体分布和基因复制,对梨基因组的研究发现了75个糖转运体基因,其中有6个基因属于蔗糖转运体(SUT)家族,表达分析显示,大多数ST基因在果实发育过程中表达。Wu等[2]从基因组水平上分析63个亚洲梨和50个欧洲梨,发现了许多糖相关基因,对于亚洲梨,在选定的区域共鉴定出45个糖相关基因,在欧洲梨中只鉴定出11个糖相关基因;但发现参与有机酸代谢的基因较少,亚洲梨和欧洲梨中存在不同优势酸成分。Zhang等[99]对312个砂梨品种开展GWAS关联分析,获得大量与可溶性糖和有机酸等代谢相关的基因。Nishio等[8]对106个日本梨和1112个杂交后代开展基因组GWAS关联分析,基因组最佳线性无偏预测(GBLUP)对蔗糖、果糖和葡萄糖的基因组选择的准确性相对较高(0.67~0.75),这表明选择蔗糖和果糖含量高、葡萄糖含量低的个体是可能的。
4.4 其他研究
Wu等[100]研究证明,miRNAs广泛参与调控果实的发育和果实品质的形成,9个miRNAs被鉴定参与酥梨果糖和酸代谢。Reuscher等[101]基于定量蛋白质组学,为梨果实发育过程中的糖积累以及关键反应和转运步骤的候选基因提供了新的见解。Nishio等[102]利用砂梨秋月后代群体开发糖相关QTL标记,在连锁群LG1和LG7上发现了两个与个体糖含量相关的区域,认为侧翼区域的酸性转化酶基因PPAIV3和PPAIV1很可能是控制个体糖含量的候选基因。Jiang等[16]研究获得与总糖含量相关的2个QTLs标记(LG12-Chr3和LG6-Chr7),鉴定了几个与果实糖积累相关的差异表达基因,在甜梨后代中,PpS6PDH和ATP-PpPFK表达上调,蔗糖转运体PpSUT表达下调。
5 小结与展望
梨品种果实糖酸含量及组分因其不同发育阶段、不同品种、采后不同阶段而不同,不同的糖酸含量及组分差异形成了丰富多样的酸甜风味。关于糖酸含量及组分差异的研究成果已经相当丰富,各种调控糖酸含量的措施研究已经具有很强的指导性,基于采前采后的相关研究,针对具体梨品种可开展调控果实糖酸的生产实践应用。关于梨品种果实糖酸含量及组分差异的分子机制研究,在功能基因、转录调控、QTLs分子标记、基因组学和蛋白组学方面也已经取得一系列成果,但是果实糖酸代谢是十分复杂的生理生化代谢网络的一部分,依然有巨大的研究空间。现有梨果实糖酸分子生物学的研究成果已经阐释了梨果糖酸代谢的部分现象,并已在梨杂交群体后代评价中进行探索研究,这将有助于开展不同糖酸比的梨新品种选育。
梨属植物是高度杂合的物种,有着漫长的进化过程。梨栽培品种是人类长期驯化选择的产物,许多果实经济性状优于梨野生种。关于梨果实糖酸的研究,应从以下几方面加强探索:一是开展梨品种和野生型之间的比较研究,探索糖酸代谢的关键功能基因和調控因子,从而更清晰地阐释梨品种果实糖酸性状驯化的分子机制;二是开展杂交群体梨果实糖酸遗传规律的研究,进行相关功能基因定位,以开发相关糖酸分子标记,指导梨新品种选育;三是利用基因编辑技术完善梨品种果实糖酸代谢,以期实现果实糖酸含量的精准调控,从而指导梨新品种选育。伴随人类科技的日新月异和各种高科技技术的综合应用,将使有目的地改造梨品种果实糖酸含量和精准调控梨果实酸甜风味成为可能。
参考文献 References:
[1] LI X L,LIU L,MING M L,HU H J,ZHANG M Y,FAN J,SONG B B,ZHANG S L,WU J. Comparative transcriptomic analysis provides insight into the domestication and improvement of pear (P. pyrifolia) fruit[J]. Plant Physiology,2019,180(1):435-452.
[2] WU J,WANG Y T,XU J B,KORBAN S S,FEI Z J,TAO S T,MING R,TAI S S,KHAN A M,POSTMAN J D,GU C,YIN H,ZHENG D M,QI K J,LI Y,WANG R Z,DENG C H,KUMAR S,CHAGN? D,LI X L,WU J Y,HUANG X S,ZHANG H P,XIE Z H,LI X,ZHANG M Y,LI Y H,YUE Z,FANG X D,LI J M,LI L T,JIN C,QIN M F,ZHANG J Y,WU X,KE Y Q,WANG J,YANG H,ZHANG S L. Diversification and independent domestication of Asian and European pears[J]. Genome Biology,2018,19(1):77.
[3] LI Q H,QIAO X,JIA L T,ZHANG Y X,ZHANG S L. Transcriptome and resequencing analyses provide insight into differences in organic acid accumulation in two pear varieties[J]. International Journal of Molecular Sciences,2021,22(17):9622.
[4] LI J M,ZHU R X,ZHANG M Y,CAO B B,LI X L,SONG B B,LIU Z C,WU J. Natural variations in the PbCPK28 promoter regulate sugar content through interaction with PbTST4 and PbVHA-A1 in pear[J]. The Plant Journal,2023,114(1):124-141.
[5] 刘园,向思敏,王江波,吴翠云,唐章虎,龚涵,张雪,徐娟. 库尔勒香梨挥发性物质及初生代谢物的GC-MS分析[J]. 华中农业大学学报,2020,39(1):44-52.
LIU Yuan,XIANG Simin,WANG Jiangbo,WU Cuiyun,TANG Zhanghu,GONG Han,ZHANG Xue,XU Juan. GC-MS analyses of volatiles and primary metabolites in Korla Pear fruit[J]. Journal of Huazhong Agricultural University,2020,39(1):44-52.
[6] AKAGI? A,ORAS A,GA?I F,MELAND M,DRKENDA P,MEMI? S,SPAHO N,?ULJEVI? S O,JERKOVI? I,MUSI? O,HUDINA M. A comparative study of ten pear (Pyrus communis L.) cultivars in relation to the content of sugars,organic acids,and polyphenol compounds[J]. Foods,2022,11(19):3031.
[7] LIU L,CHEN C X,ZHU Y F,XUE L,LIU Q W,QI K J,ZHANG S L,WU J. Maternal inheritance has impact on organic acid content in progeny of pear (Pyrus spp.) fruit[J]. Euphytica,2016,209(2):305-321.
[8] NISHIO S,HAYASHI T,SHIRASAWA K,SAITO T,TERAKAMI S,TAKADA N,TAKEUCHI Y,MORIYA S,ITAI A. Genome-wide association study of individual sugar content in fruit of Japanese pear (Pyrus spp.)[J]. BMC Plant Biology,2021,21(1):378.
[9] LIU J L,YUE R R,SI M,WU M,CONG L,ZHAI R,YANG C Q,WANG Z G,MA F W,XU L F. Effects of exogenous application of melatonin on quality and sugar metabolism in ‘Zaosu pear fruit[J]. Journal of Plant Growth Regulation,2019,38(3):1161-1169.
[10] 杨盛,白牡丹,郝国伟,张晓伟,杜海燕,高鹏,郭黄萍. ‘玉露香梨果实发育过程中糖、酸积累特性研究[J]. 果树学报,2019,36(8):1013-1019.
YANG Sheng,BAI Mudan,HAO Guowei,ZHANG Xiaowei,DU Haiyan,GAO Peng,GUO Huangping. Study on sugar and organic acid accumulation during fruit development in ‘Yulu-
xiang pear[J]. Journal of Fruit Science,2019,36(8):1013-1019.
[11] YU C Y,CHENG H Y,CHENG R,QI K J,GU C,ZHANG S L. Expression analysis of sorbitol transporters in pear tissues reveals that PbSOT6/20 is associated with sorbitol accumulation in pear fruits[J]. Scientia Horticulturae,2019,243:595-601.
[12] SONG J X,CHEN Y C,LU Z H,ZHAO G P,WANG X L,ZHAI R,WANG Z G,YANG C Q,XU L F. PbPH5,an H+ P-ATPase on the tonoplast,is related to malic acid accumulation in pear fruit[J]. Journal of Integrative Agriculture,2022,21(6):1645-1657.
[13] 黄春辉,俞波,苏俊,舒群,滕元文. ‘美人酥和‘云红梨1号红皮砂梨果实的着色生理[J]. 中国农业科学,2010,43(7):1433-1440.
HUANG Chunhui,YU Bo,SU Jun,SHU Qun,TENG Yuanwen. A study on coloration physiology of fruit in two red Chinese sand pear cultivars ‘Meirensu and ‘Yunhongli No. 1[J]. Scientia Agricultura Sinica,2010,43(7):1433-1440.
[14] 袁晖,韦云,李馨玥,李俊才,王爱德. ‘南果梨及其芽变‘南红梨果实中糖分积累与相关基因表达差异分析[J]. 果树学报,2017,34(5):534-540.
YUAN Hui,WEI Yun,LI Xinyue,LI Juncai,WANG Aide. Differences in sugar accumulation and the related gene expression in fruit development between ‘Nanguo and its mutant ‘Nanhong pears[J]. Journal of Fruit Science,2017,34(5):534-540.
[15] 张莹,郭瑞,曹玉芬,杨祥. 2021年遼宁兴城梨种质资源果实生长发育动态观测数据集[J]. 农业大数据学报,2022,4(2):40-47.
ZHANG Ying,GUO Rui,CAO Yufen,YANG Xiang. Dynamic dataset of fruit growth and development of pear germplasm resources[J]. Journal of Agricultural Big Data,2022,4(2):40-47.
[16] JIANG S,LI S G,LUO J,WANG X Q,SHI C H. QTL mapping and transcriptome analysis of sugar content during fruit ripening of Pyrus pyrifolia[J]. Frontiers in Plant Science,2023,14:1137104.
[17] 杨志军,乐文全,张绍铃,姚改芳,张虎平,马翠云,吴俊. ‘鸭梨ב京白梨杂交后代果实可溶性糖积累差异以及相关酶活性研究[J]. 园艺学报,2012,39(6):1055-1063.
YANG Zhijun,YUE Wenquan,ZHANG Shaoling,YAO Gaifang,ZHANG Huping,MA Cuiyun,WU Jun. The difference of soluble sugar accumulation and related enzymes activities in pear fruit from hybrid offspring[J]. Acta Horticulturae Sinica,2012,39(6):1055-1063.
[18] 潘俨,孟新涛,车凤斌,薛素琳,张婷,赵世荣,廖康. 库尔勒香梨果实发育成熟的糖代谢和呼吸代谢响应特征[J]. 中国农业科学,2016,49(17):3391-3412.
PAN Yan,MENG Xintao,CHE Fengbin,XUE Sulin,ZHANG Ting,ZHAO Shirong,LIAO Kang. Metabolic profiles of sugar metabolism and respiratory metabolism of Korla pear (Pyrus sinkiangensis Yu) throughout fruit development and ripening[J]. Scientia Agricultura Sinica,2016,49(17):3391-3412.
[19] KOU X H,LI Y F,ZHANG Y,JIANG B L,XUE Z H. Gene expression and activity of enzymes involved in sugar metabolism and accumulation during ‘Huangguan and ‘Yali pear fruit development[J]. Transactions of Tianjin University,2018,24(2):101-110.
[20] 李甲明,杨志军,张绍铃,黄小三,曹玉芬,吴俊. 不同梨品种果实有机酸含量变化与相关酶活性的研究[J]. 西北植物学报,2013,33(10):2024-2030.
LI Jiaming,YANG Zhijun,ZHANG Shaoling,HUANG Xiaosan,CAO Yufen,WU Jun. Change of organic acid contents and related enzyme activities in different pear cultivars[J]. Acta Botanica Boreali-Occidentalia Sinica,2013,33(10):2024-2030.
[21] 孙新菊,齐开杰,张绍铃. ‘鸭梨 ‘新高梨果实发育中果肉及种子有机酸含量的变化[J]. 中国南方果树,2018,47(6):115-120.
SUN Xinju,QI Kaijie,ZHANG Shaoling. Dynamic changes of organic acid content in sarcocarp and seeds during fruit development of Yali and Niitaka[J]. South China Fruits,2018,47(6):115-120.
[22] 张军,姚虹. 库尔勒香梨果实发育过程中有机酸代谢规律研究[J]. 中州大学学报,2021,38(2):107-111.
ZHANG Jun,YAO Hong. Study on organic acid metabolism during fruit development of Korla fragrant pear[J]. Journal of Zhongzhou University,2021,38(2):107-111.
[23] 霍月青,胡红菊,彭抒昂,陈启亮. 砂梨品种资源有机酸含量及发育期变化[J]. 中国农业科学,2009,42(1):216-223.
HUO Yueqing,HU Hongju,PENG Shuang,CHEN Qiliang. Contents and changes of organic acid in sand pears from different germplasm resources[J]. Scientia Agricultura Sinica,2009,42(1):216-223.
[24] 李甲明,楊志军,乐文全,姚改芳,黄小三,张绍铃,吴俊. ‘鸭梨ב京白梨杂交后代果实有机酸积累差异及相关酶活性的研究[J]. 西北植物学报,2014,34(2):318-324.
LI Jiaming,YANG Zhijun,YUE Wenquan,YAO Gaifang,HUANG Xiaosan,ZHANG Shaoling,WU Jun. Difference of acidity accumulation and related enzyme activities of pear from hybrid offspring of ‘Yali × ‘Jingbaili[J]. Acta Botanica Boreali-Occidentalia Sinica,2014,34(2):318-324.
[25] 刘清鹤,荆琳,王成荣,宋健坤,杨英杰,李鼎立,王然. 鲁秀梨果实在生长发育中后期及贮藏过程中糖酸累积的变化[J]. 果树学报,2022,39(5):743-751.
LIU Qinghe,JING Lin,WANG Chengrong,SONG Jiankun,YANG Yingjie,LI Dingli,WANG Ran. Changes in accumulation of sugars and acids in the fruits of Luxiu pear during the mid to late period of growth and development and postharvest storage[J]. Journal of Fruit Science,2022,39(5):743-751.
[26] WU J Y,FAN J B,LI Q H,JIA L T,XU L L,WU X,WANG Z W,LI H X,QI K J,QIAO X,ZHANG S L,YIN H. Variation of organic acids in mature fruits of 193 pear (Pyrus spp.) cultivars[J]. Journal of Food Composition and Analysis,2022,109:104483.
[27] ZHAO Y N,GENG J H,ZHANG Y,NAM K,XUE Z H,KOU X H. Changes in sugar metabolism and fruit quality of different pear cultivars during cold storage[J]. Transactions of Tianjin University,2019,25(4):389-399.
[28] WANG L,CHEN Y,WANG S K,XUE H B,SU Y L,YANG J,LI X G. Identification of candidate genes involved in the sugar metabolism and accumulation during pear fruit post-harvest ripening of ‘Red Clapps Favorite (Pyrus communis L.) by transcriptome analysis[J]. Hereditas,2017,155:11.
[29] WANG L B,MA M,ZHANG Y R,WU Z F,GUO L,LUO W Q,WANG L,ZHANG Z,ZHANG S L. Characterization of the genes involved in malic acid metabolism from pear fruit and their expression profile after postharvest 1-MCP/ethrel treatment[J]. Journal of Agricultural and Food Chemistry,2018,66(33):8772-8782.
[30] MA M,WANG L B,ZHANG S L,GUO L,ZHANG Z,LI J,SUN L Q,ZHANG S L. Acid vacuolar invertase 1 (PbrAc-Inv1) and invertase inhibitor 5 (PbrII5) were involved in sucrose hydrolysis during postharvest pear storage[J]. Food Chemistry,2020,320:126635.
[31] XU J Y,ZHANG Y,QI D,HUO H L,DONG X G,TIAN L M,ZHANG X S,LIU C,CAO Y F. Postharvest metabolomic changes in Pyrus ussuriensis Maxim. wild accession ‘Zaoshu Shanli[J]. Journal of Separation Science,2018,41(21):4001-4013.
[32] LWIN H P,LEE J. Fruit quality and major metabolites in cold-stored ‘Wonhwang Asian pears are differentially affected by fruit size[J]. Journal of the Science of Food and Agriculture,2020,100(14):5117-5125.
[33] DIAS C,RIBEIRO T,RODRIGUES A C,FERRANTE A,VASCONCELOS M W,PINTADO M. Cold storage demand for ‘Rocha pear ripening:A comparison between a shorter and longer cold period[J]. Scientia Horticulturae,2022,299:111033.
[34] 黃丽,王亮,赵迎丽,张微,陈会燕,张立新,杨志国. 3种梨贮藏期间果实品质、可溶性糖和有机酸含量变化[J]. 食品研究与开发,2023,44(10):46-52.
HUANG Li,WANG Liang,ZHAO Yingli,ZHANG Wei,CHEN Huiyan,ZHANG Lixin,YANG Zhiguo. Changes in fruit quality,soluble sugar and organic acid content of three pear species during storage[J]. Food Research and Development,2023,44(10):46-52.
[35] WANG J W,DONG S Z,JIANG Y G,HE H S,LIU T,LV M,JI S J. Influence of long-term cold storage on phenylpropanoid and soluble sugar metabolisms accompanied with peel browning of ‘Nanguo pears during subsequent shelf life[J]. Scientia Horticulturae,2020,260:108888.
[36] KIRCA L,KIRCA S,AYG?N A. Organic acid,phenolic compound and antioxidant contents of fresh and dried fruits of pear (Pyrus communis L.) cultivars[J]. Erwerbs-Obstbau,2023,65(4):677-691.
[37] H?C P,KO???KOV? J,OMASTOV? P,BAL?K J,GOLI?? J,HOR?K M. Physiochemical changes of European pear cv. Conference and Asian pear cv. Yali during cold storage[J]. Horticulturae,2023,9(3):378.
[38] GAN X J,MA Q Y,WANG L W,LIU W H,CHEN Z Z,WANG W X,WANG J,MU J L. Physicochemical,sensory characterisation and volatile components of 16 NFC pear juice[J]. Journal of Food Measurement and Characterization,2023,17(4):3534-3547.
[39] LIU Y,WEN H,YANG X P,WU C Y,MING J Q,ZHANG H Y,CHEN J J,WANG J B,XU J. Metabolome and transcriptome profiling revealed the enhanced synthesis of volatile esters in Korla pear[J]. BMC Plant Biology,2023,23(1):264.
[40] 姚改芳,张绍铃,吴俊,曹玉芬,刘军,韩凯,杨志军. 10个不同系统梨品种的可溶性糖与有机酸组分含量分析[J]. 南京农业大学学报,2011,34(5):25-31.
YAO Gaifang,ZHANG Shaoling,WU Jun,CAO Yufen,LIU Jun,HAN Kai,YANG Zhijun. Analysis of components and contents of soluble sugars and organic acids in ten cultivars of pear by high performance liquid chromatography[J]. Journal of Nanjing Agricultural University,2011,34(5):25-31.
[41] 姚改芳,杨志军,张绍铃,曹玉芬,刘军,吴俊. 梨不同栽培种果实有机酸组分及含量特征分析[J]. 园艺学报,2014,41(4):755-764.
YAO Gaifang,YANG Zhijun,ZHANG Shaoling,CAO Yufen,LIU Jun,WU Jun. Characteristics of components and contents of organic acid in pear fruits from different cultivated species[J]. Acta Horticulturae Sinica,2014,41(4):755-764.
[42] GAO Z,ZHANG C J,LUO M,WU Y S,DUAN S Y,LI J F,WANG L,SONG S R,XU W P,WANG S P,ZHANG C X,MA C. Proteomic analysis of pear (Pyrus pyrifolia) ripening process provides new evidence for the sugar/acid metabolism difference between core and mesocarp[J]. Proteomics,2016,16(23):3025-3041.
[43] 安景舒,關晔晴,关军锋,牟德华. 不同品种和产地梨果实可溶性糖组分比较[J]. 食品安全质量检测学报,2018,9(23):6124-6129.
AN Jingshu,GUAN Yeqing,GUAN Junfeng,MOU Dehua. Comparison of soluble sugar components in pear fruit of different varieties and producing areas[J]. Journal of Food Safety & Quality,2018,9(23):6124-6129.
[44] 李芳芳,何子顺,陶书田,张绍铃,张虎平. 套袋对‘库尔勒香梨果实发育过程中可溶性糖含量的影响[J]. 果树学报,2014,31(6):1072-1078.
LI Fangfang,HE Zishun,TAO Shutian,ZHANG Shaoling,ZHANG Huping. Effects of bagging on soluble sugars contents during fruit development of ‘Korla fragrant pear[J]. Journal of Fruit Science,2014,31(6):1072-1078.
[45] WANG Y L,ZHANG X F,WANG R,BAI Y X,LIU C L,YUAN Y B,YANG Y J,YANG S L. Differential gene expression analysis of ‘Chili (Pyrus bretschneideri) fruit pericarp with two types of bagging treatments[J]. Horticulture Research,2017,4:17005.
[46] 柯凡君,张虎平,陶书田,张绍铃. 套袋对梨果实发育过程中糖组分及其相关酶活性的影响[J]. 西北植物学报,2011,31(7):1422-1427.
KE Fanjun,ZHANG Huping,TAO Shutian,ZHANG Shaoling. Sugar component contents and metabolism-related enzyme activities in developing pear fruits after bagging[J]. Acta Botanica Boreali-Occidentalia Sinica,2011,31(7):1422-1427.
[47] 李芳芳,张虎平,何子顺,陶书田,李格,张绍铃. 套袋对‘库尔勒香梨果实糖酸组分与香气成分的影响[J]. 园艺学报,2014,41(7):1443-1450.
LI Fangfang,ZHANG Huping,HE Zishun,TAO Shutian,LI Ge,ZHANG Shaoling. Effects of bagging on soluble sugars,organic acids,and aroma compounds in Pyrus sinkiangensis ‘Korla Xiangli fruit[J]. Acta Horticulturae Sinica,2014,41(7):1443-1450.
[48] 孔佳君,曹鵬,吴潇,袁亚洲,余珮嘉,陶书田,张绍铃. 不同颜色滤光膜套袋对‘砀山酥梨果实品质及矿质元素含量的影响[J]. 园艺学报,2018,45(6):1173-1184.
KONG Jiajun,CAO Peng,WU Xiao,YUAN Yazhou,YU Peijia,TAO Shutian,ZHANG Shaoling. Effects of light quality on fruit quality and absorption of mineral elements in‘Dangshan Suli pear fruit development[J]. Acta Horticulturae Sinica,2018,45(6):1173-1184.
[49] 李刚波,樊继德,赵林,张婷,张梅,杨艳,董玲霞,王福建,杨峰. 不同时期套袋对早熟梨果实品质及有机氯菊酯类农药残留的影响[J]. 西北农业学报,2018,27(2):220-227.
LI Gangbo,FAN Jide,ZHAO Lin,ZHANG Ting,ZHANG Mei,YANG Yan,DONG Lingxia,WANG Fujian,YANG Feng. Effect of bagging time on fruit quality and organochlorine pesticides residues of early maturing pear[J]. Acta Agriculturae Boreali-Occidentalis Sinica,2018,27(2):220-227.
[50] 李刚波,樊继德,赵林,张婷,张梅,常有宏,蔺经,杨峰. 套袋微环境特征及其对早熟梨果实品质的影响[J]. 西南农业学报,2018,31(9):1882-1890.
LI Gangbo,FAN Jide,ZHAO Lin,ZHANG Ting,ZHANG Mei,CHANG Youhong,LIN Jing,YANG Feng. Changes of microenvironment in different bagging time and their effects on fruit quality of early-maturing pear[J]. Southwest China Journal of Agricultural Sciences,2018,31(9):1882-1890.
[51] 李刚波,樊继德,赵林,张婷,张梅,杨艳,杨峰. 五种套袋对早熟梨果实糖酸和毒死蜱农药残留的影响[J]. 浙江农业学报,2018,30(8):1363-1368.
LI Gangbo,FAN Jide,ZHAO Lin,ZHANG Ting,ZHANG Mei,YANG Yan,YANG Feng. Effects of 5 bagging treatments on sugar and acid content and chlorpyrifos pesticide residues in early maturing pears[J]. Acta Agriculturae Zhejiangensis,2018,30(8):1363-1368.
[52] 徐锴,赵德英,袁继存,闫帅,张少瑜. 不同果袋对红色梨果实品质的影响[J]. 浙江农业学报,2019,31(12):2011-2018.
XU Kai,ZHAO Deying,YUAN Jicun,YAN Shuai,ZHANG Shaoyu. Effect of different types of fruit bag on fruit quality of red pear[J]. Acta Agriculturae Zhejiangensis,2019,31(12):2011-2018.
[53] 吴瑞媛,陈露露,王涛,黄雪燕,蔡丹英,滕元文. 反光膜对大棚‘翠冠梨果实糖积累及蔗糖代谢相关酶活性的影响[J]. 果树学报,2013,30(3):427-432.
WU Ruiyuan,CHEN Lulu,WANG Tao,HUANG Xueyan,CAI Danying,TENG Yuanwen. Effects of reflective film on sugar accumulation and sucrose-metabolizing enzymes in fruit of ‘Cuiguan pear cultivated in plastic tunnel[J]. Journal of Fruit Science,2013,30(3):427-432.
[54] GU C,WU R F,YU C Y,QI K J,WU C,ZHANG H P,ZHANG S L. Spatio-temporally expressed sorbitol transporters cooperatively regulate sorbitol accumulation in pear fruit[J]. Plant Science,2021,303:110787.
[55] 韩彦肖,王亚茹,刘树海,王永博,李晓,李勇,王迎涛. 植物生长调节剂处理对黄冠梨糖、酸含量的影响[J]. 华北农学报,2012,27(S1):149-153.
HAN Yanxiao,WANG Yaru,LIU Shuhai,WANG Yongbo,LI Xiao,LI Yong,WANG Yingtao. Effects of plant growth regulators on contents of sugar and acid in Huangguan pear fruits[J]. Acta Agriculturae Boreali-Sinica,2012,27(S1):149-153.
[56] 施春晖,王晓庆,张学英,陈继平,骆军. 植物生长调节剂对‘翠冠梨的疏果效应及对果实品质的影响[J]. 上海农业学报,2018,34(5):84-90.
SHI Chunhui,WANG Xiaoqing,ZHANG Xueying,CHEN Jiping,LUO Jun. Effect of plant growth regulators on fruit thinning and fruit quality of ‘Cuiguan pear[J]. Acta Agriculturae Shanghai,2018,34(5):84-90.
[57] 韩春红,李博,杨英军,姜伟,张向展,王倩,陈迪新,薛华柏. MeJA和PDJ对3个红皮梨品种果实着色及糖酸含量的影响[J]. 中国果树,2022(12):14-19.
HAN Chunhong,LI Bo,YANG Yingjun,JIANG Wei,ZHANG Xiangzhan,WANG Qian,CHEN Dixin,XUE Huabai. Effects of MeJA and PDJ on fruit coloration,sugar and acid content of three red pear cultivars[J]. China Fruits,2022(12):14-19.
[58] 李节法,杨琪,虞秀明,王磊,王世平,许文平,张才喜. 赤霉素对梨糖代谢及其关键酶基因表达的影响[J]. 上海交通大学学报(农业科学版),2015,33(3):21-28.
LI Jiefa,YANG Qi,YU Xiuming,WANG Lei,WANG Shiping,XU Wenping,ZHANG Caixi. Influence of gibberellins on sugar metabolism and related gene expression in fruit of pear (Pyrus pyrifolia)[J]. Journal of Shanghai Jiao Tong University (Agricultural Science),2015,33(3):21-28.
[59] TIAN J A,WEN Y E,ZHANG F,SAI J Y,ZHANG Y,LI W S. Effects of endogenous hormones and sugars on fruit size driven by cell division between Korla fragrant pear and its bud mutation[J]. HortScience,2021,56(8):881-888.
[60] WANG Y,WANG G M,XU W Y,ZHANG Z W,SUN X,ZHANG S L. Exogenous melatonin improves pear resistance to Botryosphaeria dothidea by increasing autophagic activity and sugar/organic acid levels[J]. Phytopathology,2022,112(6):1335-1344.
[61] WANG J W,LV M,HE H S,JIANG Y G,YANG J Y,JI S J. Glycine betaine alleviated peel browning in cold-stored ‘Nanguo pears during shelf life by regulating phenylpropanoid and soluble sugar metabolisms[J]. Scientia Horticulturae,2020,262:109100.
[62] 邵白俊杰,田嘉,郝志超,王乾,張峰,温玥. 乙烯利对库尔勒香梨果实发育进程和品质的影响[J]. 西北植物学报,2023,43(2):265-275.
SHAO-Bai Junjie,TIAN Jia,HAO Zhichao,WANG Qian,ZHANG Feng,WEN Yue. Effects of ethephon on fruit developmental process and quality of Korla fragrant pear[J]. Acta Botanica Boreali-Occidentalia Sinica,2023,43(2):265-275.
[63] SHEN C W,WANG J,JIN X,LIU N,FAN X S,DONG C X,SHEN Q R,XU Y C. Potassium enhances the sugar assimilation in leaves and fruit by regulating the expression of key genes involved in sugar metabolism of Asian pears[J]. Plant Growth Regulation,2017,83(2):287-300.
[64] WANG Z H,YANG H,MA Y W,JIANG G F,MEI X L,LI X G,YANG Q S,KAN J L,XU Y C,YANG T J,LIN J,DONG C X. WGCNA analysis revealing molecular mechanism that bio-organic fertilizer improves pear fruit quality by increasing sucrose accumulation and reducing citric acid metabolism[J]. Frontiers in Plant Science,2022,13:1039671.
[65] SHEN C W,WANG J,SHI X Q,KANG Y L,XIE C Y,PENG L R,DONG C X,SHEN Q R,XU Y C. Transcriptome analysis of differentially expressed genes induced by low and high potassium levels provides insight into fruit sugar metabolism of pear[J]. Frontiers in Plant Science,2017,8:938.
[66] 周君,肖偉,陈修德,高东升,李玲. 外源钙对‘黄金梨叶片光合特性及果实品质的影响[J]. 植物生理学报,2018,54(3):449-455.
ZHOU Jun,XIAO Wei,CHEN Xiude,GAO Dongsheng,LI Ling. Effect of exogenous calcium on leaf photosynthetic characteristics and fruit quality of ‘Whangkeumbae pear[J]. Plant Physiology Journal,2018,54(3):449-455.
[67] 周君,肖伟,陈修德,高东升,李玲. 喷施氨基酸钙对黄金梨光合性能、果实钙含量及品质的影响[J]. 山东农业大学学报(自然科学版),2018,49(4):551-555.
ZHOU Jun,XIAO Wei,CHEN Xiude,GAO Dongsheng,LI Ling. Effect of spraying amino acid-Ca on photosynthetic characteristics,calcium content and quality of ‘Whangkeumbae pear[J]. Journal of Shandong Agricultural University (Natural Science Edition),2018,49(4):551-555.
[68] 魏树伟,王少敏,童瑶,王宏伟,冉昆,董冉,董肖昌,张勇. 钙处理对‘南果梨果实香气合成底物及关键酶活性的影响[J]. 植物生理学报,2020,56(12):2745-2754.
WEI Shuwei,WANG Shaomin,TONG Yao,WANG Hongwei,RAN Kun,DONG Ran,DONG Xiaochang,ZHANG Yong. Effects of calcium treatment on substrates and key enzyme activities related to aroma synthesis in ‘Nanguoli pear fruits[J]. Plant Physiology Journal,2020,56(12):2745-2754.
[69] PESSOA C C,LIDON F C,DACCAK D,LU?S I C,MARQUES A C,COELHO A R F,LEGOINHA P,RAMALHO J C,LEIT?O A E,GUERRA M,LEIT?O R G,CAMPOS P S,PAIS I P,SILVA M M,REBOREDO F H,PESSOA M F,SIM?ES M. Calcium biofortification of Rocha pear fruits:Implications on mineral elements,sugars and fatty acids accumulation in tissues[J]. Scientia Horticulturae,2022,4(4):35.
[70] XU Y H,XIONG B,WANG Z H,QIU X A. Effects of different fertilization methods on growth and fruit quality of ‘Aiganshui pear tree[J]. IOP Conference Series:Earth and Environmental Science,2018,186:012031.
[71] 劉松忠,刘军,朱青青,张强,王小伟,魏钦平. 肥料种类对不同采收期‘黄金梨糖酸含量和风味的影响[J]. 果树学报,2012,29(5):804-808.
LIU Songzhong,LIU Jun,ZHU Qingqing,ZHANG Qiang,WANG Xiaowei,WEI Qinping. Effects of manure types on sugar and acid contents and flavor of pear (Pyrus pyrifolia ‘Hwangkumbae) at different mature stages[J]. Journal of Fruit Science,2012,29(5):804-808.
[72] 邵微,徐国益,于会丽,高登涛,刘远,司鹏. 低分子有机酸水溶肥提升梨叶片光合、养分吸收及果实品质[J]. 果树学报,2022,39(6):992-1003.
SHAO Wei,XU Guoyi,YU Huili,GAO Dengtao,LIU Yuan,SI Peng. Low molecular weight organic acid water-soluble fertilizer improves leaf photosynthesis,nutrient absorption and fruit quality of pear[J]. Journal of Fruit Science,2022,39(6):992-1003.
[73] 丁易飞,申长卫,王洁,谢昶琰,彭莉润,金昕,董彩霞,徐阳春. 不同施氮水平对棚架栽培‘寿新水梨生长及山梨醇代谢的影响[J]. 南京农业大学学报,2017,40(2):242-250.
DING Yifei,SHEN Changwei,WANG Jie,XIE Changyan,PENG Lirun,JIN Xin,DONG Caixia,XU Yangchun. Effects of different supply of N levels on tree growth and sorbitol metabolism in leaf and fruit of trellis trained ‘Kotobuki Shinsui pear[J]. Journal of Nanjing Agricultural University,2017,40(2):242-250.
[74] 张海棠,赵德英,闫帅,徐锴,张艳珍. 不同钾镁配比对‘早酥梨果实品质的影响[J]. 果树学报,2020,37(11):1667-1675.
ZHANG Haitang,ZHAO Deying,YAN Shuai,XU Kai,ZHANG Yanzhen. Effect of potassium-magnesium ratio on ‘Zaosu pear fruit quality[J]. Journal of Fruit Science,2020,37(11):1667-1675.
[75] TOKALA V Y,SINGH Z,KYAW P N. 1H-cyclopropabenzene and 1H-cyclopropa[b]naphthalene fumigation suppresses climacteric ethylene and respiration rates and modulates fruit quality in long-term controlled atmosphere-stored ‘Gold Rush pear fruit[J]. Journal of Plant Growth Regulation,2021,40(6):2276-2285.
[76] BAI L,ZHANG L,LV J Y,ZHANG Y Z,SUN M Y,CHEN J X,GE Y H. Effects of 1-methylcyclopropene (1-MCP) treatment on ethanol fermentation of Nanguo pear fruit during ripening[J]. Journal of Food Biochemistry,2022,46(5):e14035.
[77] LWIN H P,LEE J. Preharvest 1-methylcyclopropene treatment effects on fruit quality attributes and targeted metabolites in ‘Wonhwang pears stored at room temperature after cold storage[J]. Scientia Horticulturae,2021,289:110480.
[78] LWIN H P,LEE J. Differential effects of preharvest sprayable 1-methylcyclopropene application on fruit quality attributes and major targeted metabolites in cold-stored ‘Chuhwangbae pears[J]. Horticulture,Environment,and Biotechnology,2021,62(1):53-61.
[79] LWIN H P,LEE J. Differential effects of postharvest 1-MCP treatment on fruit quality and targeted major metabolites in long-term cold-stored ‘Wonhwang pears[J]. Horticulture,Environment,and Biotechnology,2022,63(4):499-513.
[80] LATT T T,LWIN H P,SEO H J,LEE J. 1-Methylcyclopropene delays degradation of peel greenness but induces internal physiological disorders in cold-stored fruit of interspecific pears[J]. Scientia Horticulturae,2023,312:111852.
[81] OU C Q,WANG F,WANG J H,LI S,ZHANG Y J,FANG M,MA L,ZHAO Y N,JIANG S L. A de novo genome assembly of the dwarfing pear rootstock Zhongai 1[J]. Scientific Data,2019,6:281.
[82] WANG X L,CONG L,PANG J W,CHEN Y,WANG Z G,ZHAI R,YANG C Q,XU L F. Dwarfing rootstock ‘Yunnan quince promoted fruit sugar accumulation by influencing assimilate flow and PbSWEET6 in pear scion[J]. Horticulturae,2022,8(7):649.
[83] 徐文清,何永红,王维,伊成勇,韦军. 砧木对‘丰水梨果实有机酸组分和含量变化的影响[J]. 中国南方果树,2017,46(1):16-19.
XU Wenqing,HE Yonghong,WANG Wei,YI Chengyong,WEI Jun. Effects of rootstocks on components and content changes of organic acids in ‘Hosui' pear fruits[J]. South China Fruits,2017,46(1):16-19.
[84] DUAN B,GE Y H,LI C Y,GAO X N,TANG Q,LI X,WEI M L,CHEN Y R. Effect of exogenous ATP treatment on sucrose metabolism and quality of Nanguo pear fruit[J]. Scientia Horticulturae,2019,249:71-76.
[85] WANG D,MA Q,BELWAL T,LI D,LI W X,LI L,LUO Z S. High carbon dioxide treatment modulates sugar metabolism and maintains the quality of fresh-cut pear fruit[J]. Molecules,2020,25(18):4261.
[86] ABDULLAH M,CAO Y,CHENG X,MENG D D,CHEN Y,SHAKOOR A,GAO J S,CAI Y P. The sucrose synthase gene family in Chinese pear (Pyrus bretschneideri Rehd.):Structure,expression,and evolution[J]. Molecules,2018,23(5):1144.
[87] 戴美松,徐飛,施泽彬,徐昌杰. 砂梨山梨醇转运蛋白(SOT)基因家族成员表达特性及在果实糖积累中的作用初探[J]. 园艺学报,2015,42(8):1457-1466.
DAI Meisong,XU Fei,SHI Zebin,XU Changjie. Preliminary study on expression characteristics of sorbitol transporter (SOT) gene family and the role in sugar accumulation in Pyrus pyrifolia fruits[J]. Acta Horticulturae Sinica,2015,42(8):1457-1466.
[88] LI J M,QIN M F,QIAO X,CHENG Y S,LI X L,ZHANG H P,WU J. A new insight into the evolution and functional divergence of SWEET transporters in Chinese White pear (Pyrus bretschneideri)[J]. Plant and Cell Physiology,2017,58(4):839-850.
[89] NI J P,LI J M,ZHU R X,ZHANG M Y,QI K J,ZHANG S L,WU J. Overexpression of sugar transporter gene PbSWEET4 of pear causes sugar reduce and early senescence in leaves[J]. Gene,2020,743:144582.
[90] CHENG R,CHENG Y S,L? J H,CHEN J Q,WANG Y Z,ZHANG S L,ZHANG H P. The gene PbTMT4 from pear (Pyrus bretschneideri) mediates vacuolar sugar transport and strongly affects sugar accumulation in fruit[J]. Physiologia Plantarum,2018,164(3):307-319.
[91] 程寅勝,陈健秋,陈丹,吕佳红,张俊,张绍铃,伍涛,张虎平. 梨糖转运相关基因PbTMT4启动子克隆及功能分析[J]. 园艺学报,2019,46(1):25-36.
CHENG Yinsheng,CHEN Jianqiu,CHEN Dan,L? Jiahong,ZHANG Jun,ZHANG Shaoling,WU Tao,ZHANG Huping. Cloning and functional analysis of the promoter of PbTMT4 gene related sugar transport in pear[J]. Acta Horticulturae Sinica,2019,46(1):25-36.
[92] WANG L F,QI X X,HUANG X S,XU L L,JIN C,WU J,ZHANG S L. Overexpression of sucrose transporter gene PbSUT2 from Pyrus bretschneideri,enhances sucrose content in Solanum lycopersicum fruit[J]. Plant Physiology and Biochemistry,2016,105:150-161.
[93] LI J M,ZHENG D M,LI L T,QIAO X,WEI S W,BAI B,ZHANG S L,WU J. Genome-wide function,evolutionary characterization and expression analysis of sugar transporter family genes in pear (Pyrus bretschneideri Rehd.)[J]. Plant and Cell Physiology,2015,56(9):1721-1737.
[94] LI X Y,GUO W,LI J C,YUE P T,BU H D,JIANG J,LIU W T,XU Y X,YUAN H,LI T,WANG A D. Histone acetylation at the promoter for the transcription factor PuWRKY31 affects sucrose accumulation in pear fruit[J]. Plant Physiology,2020,182(4):2035-2046.
[95] QIN M F,LI L T,SINGH J,SUN M Y,BAI B,LI S W,NI J P,ZHANG J Y,ZHANG X,WEI W L,ZHANG M Y,LI J M,QI K J,ZHANG S L,KHAN A,WU J. Construction of a high-density bin-map and identification of fruit quality-related quantitative trait loci and functional genes in pear[J]. Horticulture Research,2022,9:uhac141.
[96] L? J H,TAO X,YAO G F,ZHANG S L,ZHANG H P. Transcriptome analysis of low- and high-sucrose pear cultivars identifies key regulators of sucrose biosynthesis in fruits[J]. Plant & Cell Physiology,2020,61(8):1493-1506.
[97] LI X Y,GUO W,XU M Y,ZHAO J M,WANG G,YUAN H,WANG A D. PuWRKY31 affects ethylene production in response to sucrose signal in pear fruit[J]. Horticulture Research,2022,9:uhac156.
[98] LIN L K,YUAN K L,HUANG Y D,DONG H Z,QIAO Q H,XING C H,HUANG X S,ZHANG S L. A WRKY transcription factor PbWRKY40 from Pyrus betulaefolia functions positively in salt tolerance and modulating organic acid accumulation by regulating PbVHA-B1 expression[J]. Environmental and Experimental Botany,2022,196:104782.
[99] ZHANG M Y,XUE C,HU H J,LI J M,XUE Y S,WANG R Z,FAN J,ZOU C,TAO S T,QIN M F,BAI B,LI X L,GU C,WU S,CHEN X,YANG G Y,LIU Y Y,SUN M Y,FEI Z J,ZHANG S L,WU J. Genome-wide association studies provide insights into the genetic determination of fruit traits of pear[J]. Nature Communications,2021,12(1):1144.
[100] WU J,WANG D F,LIU Y F,WANG L,QIAO X,ZHANG S L. Identification of miRNAs involved in pear fruit development and quality[J]. BMC Genomics,2014,15(1):953.
[101] REUSCHER S,FUKAO Y,MORIMOTO R,OTAGAKI S,OIKAWA A,ISUZUGAWA K,SHIRATAKE K. Quantitative proteomics-based reconstruction and identification of metabolic pathways and membrane transport proteins related to sugar accumulation in developing fruits of pear (Pyrus communis)[J]. Plant and Cell Physiology,2016,57(3):505-518.
[102] NISHIO S,SAITO T,TERAKAMI S,TAKADA N,KATO H,ITAI A,YAMAMOTO T. Identification of QTLs associated with conversion of sucrose to hexose in mature fruit of Japanese pear[J]. Plant Molecular Biology Reporter,2018,36(4):643-652.