孙文泰 董铁 王萍 马明
摘 要:【目的】对苹果与梨远缘杂交的优良品种甘金和优系甘红进行果实品质特性评价,并用特异性分子标记鉴定杂交种的真实性,为后期真杂种在抗逆育种研究领域应用提供理论支撑。【方法】对甘金和甘红树体的生长势和果实经济性状进行评价,将苹果金冠和西洋梨巴梨的基因组进行比对,分别筛选苹果和梨中特有的序列,通过设计属间特异性引物对甘金、甘红和亲本的DNA进行扩增。【结果】甘金和甘红树势生长健壮、抗逆性强和果实品质优。特异性引物M1、M2和M3在母本苹果品种中扩增出条带;P1、P2、P3这3对引物只能在父本梨品种中扩增出条带;2对通用引物U1和U2在苹果和梨杂交种中均能扩增出条带。此外,苹果M1、M2、M3和梨P1、P2、P3对杂交后代甘红、甘金进行扩增时,均出现条带,说明杂交后代既有苹果的基因,又有梨的基因。【结论】采用基因特异性分子标记开发的梨和苹果属间的特异性引物,鉴定远缘杂种的真实性,为苹果和梨以及其他果树的属间远缘杂交种的鉴定提供有价值的参考。
关键词:苹果;梨;甘金;甘红;远缘杂交;基因特异性分子标记
中圖分类号:S661.1 文献标志码:A 文章编号:1009-9980(2023)12-2505-08
收稿日期:2023-08-07 接受日期:2023-10-18
基金项目:甘肃省农业科学院生物育种项目(2023GAAS11);甘肃省科技计划项目(21YF1NA366);国家现代农业产业技术体系(GARS-27)
作者简介:孙文泰,女,副研究员,硕士,主要从事果树栽培研究工作。E-mail:swt830312@126.com
Evaluation on fruit quality characteristics and identification at molecular level of distant hybrids Ganjin and Ganhong
SUN Wentai1, DONG Tie1, WANG Ping2, MA Ming1
(1Institute of Forestry, Fruits and Floriculture, Gansu Academy of Agricultural Sciences, Lanzhou 730070, Gansu, China; 2College of Horticulture, Gansu Agricultural University, Lanzhou 730070, Gansu, China)
Abstract: 【Objective】 Based on the measurement of physiological indexes in the field and InDel molecular markers, the fruit quality characteristics of the superior variety Ganjin and excellent line Ganhong from the distant hybridization between apple and pear were evaluated and the authenticity of the hybrids was determined by specific molecular markers, which could provide a theoretical basis for the research on the resistance breeding of the late true hybrid. 【Methods】 The growth potential and fruit economic traits of hybrids Ganjin and Ganhong were analyzed. The Ganjin apple was bred between Red Delicious as the female and the Apple pear as the male. In May 1974, conventional hybridization was carried out, 131 flowers were hybridized, 5 fruits set, 5 fruits were picked and 16 full seeds were obtained. In 1975, 12 seeds were sown, 8 seeds germinated and 5 seedlings were survived finally. In 1979, the spring branch was top-grafted on the mature Ralls apple tree. In 1981, the fruit tree blossomed and bore fruit. In 1987, the best line (originally coded as 7403-03) was selected. In 1990, it was identified and formally named as Ganjin. Ganhong apple was bred between Golden Delicious as the female and Clapps Favorite as the male. In May 1975, conventional hybridization was carried out, 120 flowers were hybridized, 7 fruits set, 6 fruits were picked, and 20 full seeds were obtained. In 1975, 16 seeds were sown, 10 seeds germinated and 8 seedlings survived finally. In the spring of 1979, the branch was top-grafted on the Ralls apple tree. In 1981, the fruit tree blossomed and bore fruit, and in 1987, the best line (originally coded as 7504-01) was selected. In 1990, it was tentatively named Ganhong. The longitudinal and transverse diameters of fruit were measured with a vernier caliper. The single fruit weight was weighed with an electronic balance, the fruit firmness was measured with the GY-1 firmness tester, and the soluble solids content was measured with the WYT-A handheld sugar meter. The genome sequence of Golden Delicious apple was compared with that of European pear (Pyrus communis L.) Bartlett pear. The genome sequence of extracted apple could not be compared with that of European pear and the genome sequence of European pear could not be compared with that of apple. The specific sequences extracted were filtered and the specific sequences with a length of 100-500 bp were selected. The specific sequences were compared again in the apple and pear genomes to verify their specificity. Specific sequences of apple and pear genomes were obtained, specific fragments of 100-250 bp size were selected, and the DNA of the hybrid and parent was amplified by designing intergeneric specific primers through Primer 5.0. 【Results】 The growth potential of Ganjin and Ganhong was vigorous, with strong stress resistance and good fruit quality. The internode length of Ganjin branches was 2.3 cm, and the bud break rate was 79.1%. The axillary flower buds accounted for 12.5%, the flower buds had strong cold resistance, and the fruit set rate per cluster was 80%. The average fruit weight was 220 g, the fruit shape index was 0.88, the fruit firmness was 8.5 kg·cm-2, and the soluble solids content was 15.8%. The internode length of Ganhong was 2.6 cm, and the bud break rate was 5.1%. The axillary flower buds reached 16.5%, the flower buds also had strong cold resistance, the fruit set rate per cluster reached 76%. The average fruit weight was 200 g, the fruit shape index was 0.85, the fruit firmness was 8.2 kg·cm-2, the soluble solids content was 15.2%. The Ganhong fruit has delicious sweet and sour flavor and strong fragrance. Primers were designed from specific fragments of pear and apple, and specific primers that could amplify specific bands only in pear or apple were screened. Due to the specificity of some primers in the trial or the discomfort of the reaction system, 6 pairs of specific primers were finally selected: M1, M2, M3, P1, P2 and P3. The specific primers M1, M2 and M3 only amplified bands in maternal apple variety, but not in male pear. The three primers consisting of P1, P2 and P3 could only amplify bands in male pear variety, but could not amplify bands in apple. Two pairs of universal primers U1 and U2 can amplify bands in both apple and pear, which can repeat 3 times, that is, apple and pear can be clearly distinguished. In addition, when apple M1, M2 and M3 and pear P1, P2 and P3 primers amplified the hybrid progenies Ganjin and Ganhong, they all showed bands, indicating that the hybrid progeny had both apple and pear genes. 【Conclusion】 In this study, the specific primers between pear and apple developed by gene specific molecular markers were used to identify the authenticity of distant hybrids, which could provide a valuable reference for the identification of distant hybrids between apples and pears as well as other fruit crops.
Key words: Apple; Pear; Ganjin; Ganhong; Distant hybridization; Gene specific molecular markers
苹果(Malus domestica Borkh.)属于蔷薇科(Rosaceae)苹果亚科(Maloideae)苹果属(Malus Mill.),原产于欧洲、中亚和新疆一带,至今已有4000余年的栽培史[1-2]。在古代文献中,中国苹果被称为“柰”,最早见之于西汉武帝时期的《上林赋》:“亭、柰、厚朴”,在我国的种植栽培有2200多年的历史。
长期以来,育种学家通过实生选种[3]、芽变选种[4]、种内杂交[5]和诱变育种[6]等手段,选育出一大批苹果新种质、新品种,在生产上发挥重要作用。目前我国生产栽培的苹果品种主要是富士系,占70%左右,其次为元帅系、秦冠、嘎拉等品种,在丰富苹果品种结构的同时可初步满足常规育种的需求[7]。虽然富士苹果和元帅苹果在长期生产栽培过程中产生大量芽变类型[8],但随着育种工作的深入,植物种内的遗传资源利用渠道日益狭窄,导致生产上苹果果实成熟期、风味、外观品质的丰富性较单一,不能满足市场对苹果品种、品质多样性的需求,因此亟须通过远缘杂交的途径为后期育成品质优良、品种丰富和抗逆性强的苹果新种质打好坚实的根基。
果树远缘杂交是指种间或属间及亲缘关系更远的分类单位间进行的杂交,是丰富物种与遗传多样性的有效途径之一[9]。虽然在少数果树的种、属间通过远缘杂交获得真杂种,但是生物种间的繁殖隔离机制导致果树远缘杂交很难获得成功[10]。梨起源于我国西部山区,具有非常悠久的栽培历史和丰富的遗传多样性[11]。梨和苹果同属仁果类果树,生物学特性相似,但梨较苹果气味清香、酥脆多汁、耐贮藏且抗寒性强[12],因此生产上常选用梨与苹果进行杂交获得创新种质。梨和苹果中最常见的是属内的种间杂交,属间的远缘杂交对新种质的创制难度较大。梨和苹果的首次远缘杂交在1952年开展,杂交种的成活率较低[13]。此后,研究学者将日本梨(Pyrus serotina var. culta)与苹果(Malus domestica)进行杂交,发现杂交种子在萌芽后的6个月内全部死亡[14]。因此杂交不亲和性和杂种不育性是远缘杂交的根本问题,同时也是育种学家面临的一大技术难题。
甘金、甘红分别由甘肃省农业科学院张掖试验站在1974年、1975年通过杂交选育而成,甘金在1990年已通过品种审定,用于生产推广与育种工作进展较为缓慢;而甘红作为优异种质资源进行保存和应用,但一直未对其进行品种审定。对远缘杂交后代进行早期鉴定与选择也是远缘杂交育种的一个关键环节。苹果基因组高度杂合,早前采用的形态解剖、生理生化等方法限制了对苹果品种、杂种分析的准确性,延缓苹果育种效率[15]。当前分子标记技术解决了这些难题,常用的主要有4类分子标记类型,分别为限制性片段长度多态性(RFLP)、扩增片段长度多态性(AFLP)、简单序列重复(SSR)和随机扩增多态性(RAPD)[16-17]。将耐盐性稳定的突变体进行RAPD分析,证明基因在突变体上发生变化,为耐盐突变体的真实性提供证据[18]。刘畅等[19]采用SSR分子标记技术对49份寒地苹果资源进行不同群体的遗传多样性分析,通过20对SSR引物共检测出278个多态性等位基因,表明具有较高的遗传多样性。聂佩显等[20]以国光及其芽变材料为试材,利用AFLP技术,采用4对引物对其进行初步鉴定,比较了对照和芽变材料的多态性条带数并计算遗传相似系数。苦瓜中的DNA分子标记,如RAPD、AFLP和SSR等,多应用在苦瓜品种鉴定、杂交种纯度鉴定、遗传相似性分析等方面[21]。尽管这些分子标记已在果树、蔬菜育种上广泛使用,但是其与目的基因间的连锁关系随基因重组而被破坏,影响分子标记在应用方面的可靠性[17]。而基于全基因组重测序发展的插入和删除位点(InDel)标记[22],由于在基因组中分布广泛、密度大、标记准确和变异稳定,已被广泛应用于种质资源分析和分子育种等领域。
笔者在本研究中将梨和苹果远缘杂交育种获得的优良品种甘金和优系甘红,在前人采用同工酶鉴定的基础上,突破以往传统方法鉴定杂交种的瓶颈,从DNA分子水平出发使用特异性分子标记验证杂交种的真实性,为后期远缘杂交真杂种在苹果生物育种与传统育种相结合的研究进程中对苹果、梨的優异基因加以充分利用奠定坚实的基础。
1 材料和方法
1.1 材料
试验材料为甘肃省农业科学院张掖试验站分别在1974年和1975年通过杂交选育的2个品种(系)甘金和甘红。甘金苹果是以元帅苹果(Malus domestica ‘Red Delicious)为母本、苹果梨(Pyrus bretschneideri Rehd. ‘Ping-guoli)为父本杂交选育的品种,1990年通过品种审定。甘红苹果是以金冠苹果(Malus domestica ‘Golden Delicious)为母本、茄梨(Clapps Favorite)为父本杂交选育的优系。
试验于2018—2022年在甘肃省平凉市静宁县国家苹果产业体系平凉综合试验站内(35°24′N,105°43′E)进行。甘金和甘红各取12株树进行观察,每4株为一个重复。生长季采集无病虫害的甘金、甘红及父母本的幼嫩绿叶,经液氮速冻后在-80 ℃冰箱储藏备用。待果实成熟后,每个单株在果树东、西、南、北4个方向,随机选取树冠中部外围中等大小的20个果实,用于果实品质测定。树体长势与果实品质观测取5 a(年)的平均值。
1.2 方法
1.2.1 苹果树体树势评价方法 以成熟新梢的年生长量为标准,秋季9—10月份,在每株树的上下四周测量20个新梢,计算新梢的平均长度。根据新梢平均长度与叶片色泽,确定种质的树势,分为弱(平均长度小于15 cm,枝叶不正常)、中(平均长度15~30 cm,新梢粗度与叶片大小、颜色均正常)和强(平均长度大于30 cm,新梢粗壮,叶片大小、颜色均正常)[23]。
1.2.2 苹果果实指标的测定 果实纵横径(mm):利用游标卡尺分别测定果实的纵径和横径,测量3次取平均值;
果形指数=果实的纵径/果实的横径;
果实单果质量/g:用电子天平称重;
果实硬度/(kg·cm-2):用GY-1型硬度计测定,将果实胴部去皮后,测量3次取平均值;
果实可溶性固形物含量/%:利用WYT-A型手持糖度计,测量3次取平均值。
1.2.3 基因组DNA的提取 采用CTAB植物基因组DNA快速提取试剂盒(TIANGEN,北京)提取叶片基因组DNA。提取的DNA经1%琼脂糖凝胶电泳及分光光度计(QuawellQ5000,伯恩供应)检测DNA的浓度和纯度。
1.2.4 苹果和梨基因组序列的比对 对金冠苹果基因组序列与西洋梨巴梨基因组序列进行全局比对,提取苹果基因组序列无法比对上西洋梨的序列以及西洋梨基因组序列无法比对上苹果的序列,对各自提取出的特异序列进行过滤,选取长度为100~500 bp的特异序列,将特异序列分别在苹果和梨基因组中再次进行比对,验证其特异性。
1.2.5 引物序列的设计 在获得的苹果与梨基因组的特异序列中,选取100~250 bp的特异片段,使用Primer 5.0设计特异引物(表1),随后进行PCR扩增,同时扩增杂交父母本,并设置对照组。
1.2.6 PCR扩增反应 PCR反应体系:总体积20 μL。PCR反应程序:95 ℃预变性5 min,95 ℃变性30 s,58 ℃退火45 s,72 ℃延伸,40个循环,72 ℃延伸10 min,4 ℃保存。
2 结果与分析
2.1 甘金苹果与优系甘红苹果树体特征
甘金树势强健,枝条节间长2.3 cm,新梢平均长度为38 cm,粗度4.85 mm,萌芽率79.1%。叶片卵圆形,叶色浓绿。腋花芽率12.5%,花芽抗寒性强,在甘肃省平凉市静宁苹果产区始花期为4月26日左右,花序坐果率80%,以短果枝结果为主,进入结果期后树势中庸。
甘红树势强壮,枝条节间长2.6 cm,新梢平均长度为43 cm,粗度5.08 mm,萌芽率75.1%。叶片卵圆形,叶色浓绿。腋花芽率达16.5%,花芽抗寒性强,在甘肃省平凉市静宁苹果产区始花期为4月28日左右,花序坐果率76%,以短果枝结果为主。
2.2 甘金苹果与优系甘红苹果果实品質特征
甘金果实平均单果质量160 g,果形指数0.82,呈短圆锥形,果面为橙红色条纹状着色,着色率大于60%,有蜡质,果面光泽,果实底部呈五棱状,香味浓郁,与其亲本元帅苹果、苹果梨相似。果实肉质紧密,硬脆,果实硬度达10.5 kg·cm-2,汁液多,可溶性固形物含量15.56%,酸甜可口,耐贮性强,与其亲本苹果梨相似(图1-A)。
甘红果实平均单果质量为185 g,果形指数0.85,呈短圆锥形,果面着色为鲜红片状,着色率大于95%,果面有蜡质,较少果粉。肉质较松脆,果实硬度达11.7 kg·cm-2,香味浓郁,与其亲本金冠苹果相似。果实可溶性固形物含量16.24%,酸甜适口,与其亲本茄梨相似(图1-B,表2)。
2.3 InDel分子标记验证甘金、甘红杂交种
从梨和苹果的特异片段上设计引物,筛选出只在梨或只在苹果中能扩增出特异条带的特异性引物,由于实验中一些引物的不特异或反应体系的不适等,最终筛选出6对特异引物(M1、M2、M3、P1、P2和P3),其中,M1、M2、M3这3对引物只能在母本苹果品种中扩增出条带,而在父本梨品种中无法扩增出条带;P1、P2、P3这3对引物只能在父本梨品种中扩增出条带,而在苹果中无法扩增出条带;2对通用引物U1和U2在苹果和梨中均能扩增出条带,3次重复,即能明显区分出苹果属和梨属(图2-A)。
此外,分别用M1、M2和M3三对引物对梨的亲本进行扩增,无条带;P1、P2和P3三对引物对苹果的亲本进行扩增,无条带;并分别用苹果M1、M2、M3和梨P1、P2、P3对杂交后代甘红和甘金进行扩增,出现条带,进一步说明杂交后代既有苹果基因又有梨的基因,与预期相符,同时,扩增目的片段大小均与预期相符,条带清晰,可区分真实和假的远缘杂交单株,适用于杂交种鉴定(图2-B)。
3 讨 论
远缘杂交是创造新种质、改良品种的重要途径。通过远缘杂交将不同种、属亲本的优良性状(抗病、抗虫、抗逆性强,果实品质与产量优良等)遗传到杂种一代,在丰富生物物种遗传多样性的同时提高生物对环境的适应性,进而扩大基因库更好地开发利用果树各性状资源[24]。近年来,随着育种研究人员对杂交技术的不断探索、创新,各果树栽培种间的远缘杂交成果收获颇丰。陇缘红是以大石早生李为母本,张公园杏为父本进行杂交,获得的F1代李杏新品种[25]。Sedov[26]将梨(Pyrus spp.)和苹果(Malus pumila Mill.)进行种间杂交,获得高产、优质和抗逆性强的3个梨新品种和苹果新品种。姚青菊等[27]以夏蜡梅为母本,美国蜡梅为父本,通过人工杂交选育成属间杂种红运。但这些选育的新品种在后期品质评价与抗逆选择利用方面进展较为缓慢。本研究中,为了进一步探究远缘杂交育种在改良果实品质、优化抗逆特性方面的作用,选用张修仁等[28]选育的苹果和梨属间杂交新品种甘金和张掖试验场选育的优系甘红,通过传统的田间形态观察,发现其树势健壮且丰产优质,抗逆适应性强,果实色泽艳丽且口感爽脆多汁、香气浓郁、贮藏性强,优于其母本元帅和金冠苹果。表明通过远缘杂交育种在创造植物新类型和获得有价值的新品种方面具有重大的意义。
随着分子生物学在果树育种方面的不断研究和发展,传统的杂种后代鉴别方法已不能满足现阶段的果树育种需求,为加速果树远缘杂交后代的育种进程和提高杂种后代鉴定的可靠度,DNA水平的分子标记育种已逐步运用于杂交后代的鉴定。其中通过全基因测序得到的InDel分子标记目前广泛应用于分子育种和种质资源分析领域[29]。李胜男等[17]通过设计InDel特异性分子标记并结合PCR筛选出6对特异性引物,可有效检测鉴定苹果(Malus)和梨(Pyrus)属间杂交后代。此外,对11个苹果品种中MdTAC1a基因的启动子ATG上游2000 bp序列测序,开发了分辨苹果品种和F1代的MdTAC1a启动子特异InDel标记[30]。Lee等[31]将金冠苹果基因组序列作为参考序列对富士及芽变品种进行重测序,开发每个苹果品种特有的InDel标记。本研究中,结合前人对甘金田间形态和同工酶的鉴定,将苹果和梨全基因组进行比对,通过构建InDel分子标记设计特异性引物,在DNA分子水平上进一步鉴定远缘杂交后代甘金和甘红的真实性,不仅对苹果和梨进行了基因分型,而且也为后期苹果和梨属间杂交种更为完善的鉴定方法提供可靠的依据。
甘肃省作为黄土高原苹果的主产区,有着优越的地理位置和自然条件,海拔高、日照强、昼夜温差大,可满足苹果树的正常生长和优质果品的形成[32]。但是,近年来越冬低温、花期晚霜冻等极端天气频发,造成苹果优质丰产性大幅下降,亟须选育出高产、优质和抗逆性好的优良新品种。甘金和甘红作为苹果和梨的杂交种,综合性状均优于母本元帅和金冠苹果,并具有抗逆、产量高和品质好等优良性状,这些优异的特性可提高甘肃省苹果产区果农的收益,对其所具有的梨与苹果优异基因的挖掘与遗传规律的研究可为后期育种工作提供新思路,开拓新视野。
4 结 论
笔者在本研究中对苹果和梨远缘杂交优良品种甘金和优系甘红的树体生长势和果实经济性状进行评价,发现甘金和甘红树势生长健壮、抗逆性强,果实品质优。通过比对公开的苹果金冠和西洋梨巴梨的基因组序列,共筛选出6对特异性引物(M1、M2、M3、P1、P2、P3),苹果(M1、M2、M3)和梨(P1、P2、P3)引物对甘金和甘红均能扩增出相应大小的条带,进一步在DNA分子水平鉴定远缘杂交种的真实性,不仅为后期远缘杂交真杂种的鉴定提供思路,而且为通过生物育种与传统育种相结合挖掘关键基因来提高果实品质奠定扎实的基础。
参考文献 References:
[1] 樊红科. 苹果杂交后代果实性状选择及抗斑点落叶病MdWRKY基因功能研究[D]. 杨凌:西北农林科技大学,2011. FAN Hongke. Studies on selection of fruit traits in hybrid progeny and function of MdWRKY gene with resistance to apple alternaira leaf spot[D]. Yangling:Northwest A & F University,2011.
[2] 丁志杰,包金波,柔鲜古丽,朱甜甜,李雪丽,苗浩宇,田新民. 新疆野苹果与‘元帅 ‘金冠的叶绿体基因组比对研究[J]. 园艺学报,2022,49(9):1977-1990.
DING Zhijie,BAO Jinbo,ROUXIAN Guli,ZHU Tiantian,LI Xueli,MIAO Haoyu,TIAN Xinmin. Comparative chloroplast genome study of Mallus servisii ‘Red Delicious and ‘Golden Delicious[J]. Acta Horticulturae Sinica,2022,49(9):1977-1990.
[3] 冯健君,王学德,刘权,张伟,叶建国. 优质枇杷新品种‘宁海白[J]. 园艺学报,2004,31(2):279.
FENG Jianjun,WANG Xuede,LIU Quan,ZHANG Wei,YE Jianguo. A new special middle-ripening loquat variety ‘Ninghai Bai[J]. Acta Horticulturae Sinica,2004,31(2):279.
[4] 王秋萍,葛玉梅. 蘋果新品种红锦富的选育[J]. 中国果树,2009(3):74.
WANG Qiuping,GE Yumei. A new bud variation apple cultivar Hongjinfu[J]. China Fruits,2009(3):74.
[5] 陈东玫,杨凤秋,赵同生,李春敏,张新生,赵永波,付友. 苹果新品种‘苹帅[J]. 园艺学报,2010,37(10):1697-1698.
CHEN Dongmei,YANG Fengqiu,ZHAO Tongsheng,LI Chunmin,ZHANG Xinsheng,ZHAO Yongbo,FU You. A new apple cultivar ‘Pingshuai[J]. Acta Horticulturae Sinica,2010,37(10):1697-1698.
[6] WANG Y Q,LUO N,LI J Q,DENG Q X,LIANG H Y. Morphology,pod isozyme and rapd analyses of plants regenerated from ems-treated shoot tips in ‘Dawuxing loquat[J]. Acta Horticulturae,2007,750:149-154.
[7] CHEN J,STAUB J,QIAN C,JIANG J,LUO X,ZHUANG F. Reproduction and cytogenetic characterization of interspecific hybrids derived from Cucumis hystrix Chakr. × Cucumis sativus L.[J]. Theoretical and Applied Genetics,2003,106(4):688-695.
[8] 王洋洋. 富士苹果芽变品种比较分析及芽变优系的鉴定[D]. 杨凌:西北农林科技大学,2017.
WANG Yangyang. Analysis and comparision of fuji bud mutation varieties and identification of Fuji bud mutaion strains[D]. Yangling:Northwest A & F University,2017.
[9] 王永清,杜奎,杨志武,陶炼,杨芩,范建新,邓仁菊. 果树远缘杂交育种研究进展[J]. 果树学报,2012,29(3):440-446.
WANG Yongqing,DU Kui,YANG Zhiwu,TAO Lian,YANG Qin,FAN Jianxin,DENG Renju. Advances in the studies of distant hybridization in fruit crops[J]. Journal of Fruit Science,2012,29(3):440-446.
[10] 戴华军,朱正斌,沈雪林,周建明,何建华. 作物远缘杂交育种的途径及其实质[J]. 基因组学与应用生物学,2010,29(1):144-149.
DAI Huajun,ZHU Zhengbin,SHEN Xuelin,ZHOU Jianming,HE Jianhua. Essences and approaches of distant hybridization in crops breeding[J]. Genomics and Applied Biology,2010,29(1):144-149.
[11] 仵菲. 梨果实发育过程中酚类物质、抗氧化能力及其相关酶活性的研究[D]. 阿拉尔:塔里木大学,2022.
WU Fei. Studies on phenolics,antioxidant capacity and related enzyme activities in pear during fruit development[D]. Alar:Tarim University,2022.
[12] 韩春红. 套袋和喷施外源物(MeJA、PDJ)对红皮梨果实品质的影响[D]. 洛阳:河南科技大学,2022.
HAN Chunhong. Effects of bagging and spraying of exogenous substances (MeJA,PDJ) on fruit quality of red-skinned pear[D]. Luoyang:Henan University of Science and Technology,2022.
[13] CRANE M B,MARKS E. Pear-apple hybrids[J]. Nature,1952,170(4337):1017.
[14] ISHIMIZU T,SHINKAWA T,SAKIYAMA F,NORIOKA S. Primary structural features of rosaceous S-RNases associated with gametophytic self-incompatibility[J]. Plant Molecular Biology,1998,37(6):931-941.
[15] 阮颖,周朴华,刘春林. 九种李属植物的RAPD亲缘关系分析[J]. 园艺學报,2002,29(3):218-223.
RUAN Ying,ZHOU Puhua,LIU Chunlin. Phylogenetic relationship among nine Prunus species based on random amplified polymorphic DNA[J]. Acta Horticulturae Sinica,2002,29(3):218-223.
[16] 彭枫,张莹,陈珂,戴雨柔,李亚兵,蔡晓锋. DNA分子标记技术在菠菜遗传育种中的应用研究进展[J]. 上海师范大学学报(自然科学版),2021,50(2):237-242.
PENG Feng,ZHANG Ying,CHEN Ke,DAI Yurou,LI Yabing,CAI Xiaofeng. Research progress of DNA molecular markers in spinach genetic breeding[J]. Journal of Shanghai Normal University (Natural Sciences),2021,50(2):237-242.
[17] 李胜男,张明月,李晓龙,齐开杰,张绍铃,薛蕾,李甲明,吴俊. 苹果和梨远缘杂种后代的鉴定[J]. 农业生物技术学报,2021,29(2):393-401.
LI Shengnan,ZHANG Mingyue,LI Xiaolong,QI Kaijie,ZHANG Shaoling,XUE Lei,LI Jiaming,WU Jun. Identification of progenies of distant hybrids of apple (Malus) and pear (Pyrus)[J]. Journal of Agricultural Biotechnology,2021,29(2):393-401.
[18] 孙宁,孙建设,李增裕. 苹果砧木耐盐突变体的筛选鉴定及RAPD分析[J]. 河北农业大学学报,2004,27(5):37-40.
SUN Ning,SUN Jianshe,LI Zengyu. Salt tolerant mutant screening and RAPD analysis studies on apple rootstock[J]. Journal of Agricultural University of Hebei,2004,27(5):37-40.
[19] 刘畅,郭劲鹏,高源,胡颖慧,杨悦,宋宏伟,卜海东,于文全,王昆,顾广军. 寒地苹果资源遗传多样性及群体结构的SSR标记分析[J]. 中国果树,2023(5):15-22.
LIU Chang,GUO Jinpeng,GAO Yuan,HU Yinghui,YANG Yue,SONG Hongwei,BU Haidong,YU Wenquan,WANG Kun,GU Guangjun. Genetic diversity and population structure analysis of apple resources in cold region based on SSR markers[J]. China Fruits,2023(5):15-22.
[20] 聂佩显,于树增,陈浪波,薛晓敏,王金政. 国光苹果及其芽变材料的果实品质和AFLP分析[J]. 山东农业科学,2019,51(10):21-24.
NIE Peixian,YU Shuzeng,CHEN Langbo,XUE Xiaomin,WANG Jinzheng. Fruit quality and AFLP analysis of Ralls and its bud mutation[J]. Shandong Agricultural Sciences,2019,51(10):21-24.
[21] 苏国钊,李嫒嫒,陈宇华,韩贝贝,武星廷,邓超,徐振江. 苦瓜DNA分子标记研究进展[J]. 中國瓜菜,2023,36(6):10-15.
SU Guozhao,LI Aiai,CHEN Yuhua,HAN Beibei,WU Xingting,DENG Chao,XU Zhenjiang. Research progress on DNA molecular marker of bitter melon[J]. China Cucurbits and Vegetables,2023,36(6):10-15.
[22] 普天磊,金杰,何璐,瞿文林,廖承飞,袁建民,罗会英,赵琼玲. 基于SNP和InDel标记的余甘子群体遗传分析[J]. 果树学报,2023,40(5):875-883.
PU Tianlei,JIN Jie,HE Lu,QU Wenlin,LIAO Chengfei,YUAN Jianmin,LUO Huiying,ZHAO Qiongling. Population and genetic analysis of Phyllanthus emblica by SNP and InDel markers[J]. Journal of Fruit Science,2023,40(5):875-883.
[23] 王昆,刘凤之,曹玉芬. 苹果种质资源描述规范和数据标准[M]. 北京:中国农业出版社,2005:50.
WANG Kun,LIU Fengzhi,CAO Yufen. Descriptors and data standard for apple[M]. Beijing:China Agriculture Press,2005:50.
[24] FISCHER T C,MALNOY M,HOFMANN T,SCHWAB W,PALMIERI L,WEHRENS R,SCHUCH L A,M?LLER M,SCHIMMELPFENG H,VELASCO R,MARTENS S. F1 hybrid of cultivated apple (Malus × domestica) and European pear (Pyrus communis) with fertile F2 offspring[J]. Molecular Breeding,2014,34(3):817-828.
[25] 赵秀梅,李红旭,王发林,牛茹萱,王晨冰,李宽莹. 杏李远缘杂交新品种‘陇缘红的选育[J]. 果树学报,2021,38(3):447-450.
ZHAO Xiumei,LI Hongxu,WANG Falin,NIU Ruxuan,WANG Chenbing,LI Kuanying. A new very early-ripening of distant hybridization between plum and apricot cultivar ‘Longyuanhong[J]. Journal of Fruit Science,2021,38(3):447-450.
[26] SEDOV E N. Practical realization of I. V. Michurins ideas in breeding work with apples and pears[J]. Vestnik Selskokhozyaistvennoi Nauki,1983,10:61-67.
[27] 姚青菊,朱洪武,任全进,杨军,顾永华. 夏蜡梅与美国蜡梅属间杂交新品种‘红运[J]. 园艺学报,2014,41(8):1755-1756.
YAO Qingju,ZHU Hongwu,REN Quanjin,YANG Jun,GU Yonghua. ‘Hongyun,a new intergeneric hybrid between Sinocalycanthus chinensis and Calycanthus floridus[J]. Acta Horticulturae Sinica,2014,41(8):1755-1756.
[28] 张修仁,张居里,张世明. 苹果×梨属间杂交新品种‘甘金的选育[J]. 果树科学,1991,8(2):65-70.
ZHANG Xiuren,ZHANG Juli,ZHANG Shiming. Breeding of apple pear generic hybrid variety ‘Ganjin[J]. Journal of Fruit Science,1991,8(2):65-70.
[29] 杨红花. 李、杏属间远缘杂交及种质创新的研究[D]. 泰安:山东农业大学,2004.
YANG Honghua. Study on intergeneric distant hybridization between Prunus and Armeniaca and new germplasm creation[D]. Taian:Shandong Agricultural University,2004.
[30] LI Y Z,TAN X,GUO J,HU E Y,PAN Q,ZHAO Y A,CHU Y,ZHU Y D. Functional characterization of MdTAC1a gene related to branch angle in apple (Malus × domestica Borkh. )[J]. International Journal of Molecular Sciences,2022,23(3):1870.
[31] LEE H S,KIM G H,KWON S I,KIM J H,KWON Y S,CHOI C. Analysis of ‘Fuji apple somatic variants from next-generation sequencing[J]. Genetics and Molecular Research,2016,15(3):15038185.
[32] 强艳玉. 甘肃省苹果产业生产效率及影响因素分析[D]. 兰州:甘肃农业大学,2018.
QIANG Yanyu. Analysis on production efficiency and influencing factors of apple industry in Gansu Province[D]. Lanzhou:Gansu Agricultural University,2018.