张泽源,李玥,赵文莎,顾晶晶,张傲琰,张海龙,宋鹏博,吴建辉,张传量,宋全昊,简俊涛,孙道杰,王兴荣
小麦粒重相关性状的QTL定位及分子标记的开发
张泽源1,李玥2,赵文莎1,顾晶晶3,张傲琰1,张海龙1,宋鹏博1,吴建辉1,张传量1,宋全昊4,简俊涛5,孙道杰1,王兴荣2
1西北农林科技大学农学院,陕西杨凌 712100;2甘肃省农业科学院作物研究所,兰州 730000;3洛阳市农林科学院,河南洛阳 471023;4驻马店市农业科学院,河南驻马店 463000;5南阳市农业科学院,河南南阳 473000
【目的】小麦是世界总产量第二的粮食作物,而粒重是影响小麦产量的重要因素。以和尚头(HST)和陇春23(LC23)衍生的216个家系重组自交系(recombinant inbred lines,RIL)群体为材料,基于55K SNP基因型数据,针对小麦粒重相关性状进行QTL定位,开发和验证粒长主效QTL的共分离标记,为分子标记辅助选择育种提供参考。【方法】利用小麦55K SNP芯片对亲本和RIL群体进行基因分型,构建高密度遗传连锁图谱,并与中国春参考基因组IWGSC RefSeq v1.0进行相关性分析。基于完备区间作图法对多环境粒重相关性状进行QTL定位;通过对主效QTL进行方差分析,判断不同QTL间的加性互作效应,并分析其对粒重相关性状的影响。同时,根据粒长主效QTL的共分离SNP位点开发相应的竞争性等位基因特异性PCR标记(kompetitive allele specific PCR,KASP),并在242份国内外小麦种质构成的自然群体中进行验证。【结果】构建了和尚头/陇春23 RIL群体的高密度遗传图谱,全长4 543 cM,共包含22个连锁群,覆盖小麦21条染色体,平均遗传距离为1.7 cM。遗传图谱与物理图谱具有显著相关性,Pearson相关系数为0.77—0.99(<0.001)。共检测到51个粒重相关QTL,其中,有4个为3个及以上环境稳定表达的主效QTL,分布在2D、5A、6B和7D染色体。根据物理区间和功能标记分析主效QTL和分别为光周期基因和开花基因,方差分析表明,二者具有显著的互作效应;和优异等位基因的聚合显著提高了小麦的千粒重和粒宽。此外,根据粒长主效位点的共分离SNP开发了相应的KASP分子标记,该标记在242份小麦组成的自然群体中与粒长和粒重性状显著相关,在不同环境下能增加粒长3.33%—4.59%(<0.001)和粒重5.70%—10.35%(<0.05)。【结论】和尚头(HST)和陇春23(LC23)的粒重相关性状由多个遗传位点控制,其中,和通过加性互作效应可显著提高小麦的千粒重和粒宽。与粒重和粒长具有显著相关性,其共分离分子标记可应用于分子标记辅助选择育种。
小麦;千粒重;QTL;KASP标记;分子标记辅助选择育种
【研究意义】小麦(L.)是世界35%以上人口的主粮,提供了蛋白质、矿物质和维生素等主要营养元素[1-2]。随着人口的增加、耕地面积的减少和气候的变暖,当前的小麦产量已难以满足人类的需求[3]。因此,发掘小麦产量潜力仍然是育种工作的首要任务。小麦产量的构成要素包括千粒重、每穗粒数和单位面积穗数[4]。其中,千粒重具有较高的遗传力,可在育种早期世代进行有效的选育[5]。研究表明,千粒重、粒长和粒宽等籽粒性状与小麦产量呈正相关性[6-7]。因此,明确小麦选育过程中的籽粒相关性状和基因,对实现高产具有重要的价值和意义。【前人研究进展】尽管栽培小麦的多倍体特性使得数量性状基因座(QTL)变得复杂,但目前已在小麦21条染色体上发现了大量(400多个)控制粒重和粒型的QTL[8-10]。Ma等[11]以RIL群体基于55K SNP芯片和SSR标记构建了遗传图谱,在2D染色体(32.97—33.74 Mb)定位了1个控制粒长、粒宽和千粒重的主效QTL(与连锁);Qu等[12]利用BSA和小麦660K SNP芯片结合的方法,在2DS染色体上检测到1个有关粒长和千粒重的共定位区间,物理间距仅为3.97 Mb,并验证了候选基因在双亲中的差异;Liu等[8]在7D染色体上检测到与粒重相关的QTL,并定位于3.82 Mb物理区间,其候选基因在第三个外显子有一个1 bp的插入/缺失(InDel);Yang等[13]通过对2 230个产量相关的QTL进行元分析,发现与粒重相关的QTL分布在小麦的21条染色体上。迄今,已有45个小麦粒重相关基因被报道[14-15],分布在除1D、3B和4B染色体之外的所有染色体上。小麦光周期基因和春化基因也会影响粒重的相关性状[16]。光周期基因是控制光周期特性的主要基因,可编码与拟南芥PRR7具有序列相似性的蛋白质,有3个同源基因,分别是、和,主要通过启动子区域的缺失或插入导致光周期特性的改变[17-18];不同光周期特性与不同纬度气候条件相适应,可使小麦避开恶劣环境的危害而充分利用光照资源,提高小麦丰产性和稳产性。根据拷贝数不同,将春化基因分为、、和[19]。小麦为成花促进因子,与拟南芥和大麦同源,被命名为[20]。低温和长日照条件能促进的表达,并通过影响调节开花期,进而显著影响小麦的产量[20-21]。此外,1B/1R易位系中来自黑麦的1RS染色体不仅含有许多抗病基因,还对小麦的粒重存在显著影响[22]。【本研究切入点】和尚头是甘肃干旱地区地方品种,陇春23是甘肃省农业科学院作物研究所和国际玉米小麦改良中心(CIMMYT)创制的小麦品种,二者在粒重和粒型上具有显著差异(和尚头的各性状值均高于陇春23),但其籽粒的遗传基础尚不清楚。【拟解决的关键问题】本研究以和尚头/陇春23衍生的重组自交系群体为试验材料,构建高密度遗传图谱,解析和尚头和陇春23粒重相关性状的遗传基础,发掘粒重和粒型相关QTL位点,并开发相应的高通量KASP检测标记,为小麦分子辅助选择育种提供参考。
以和尚头(HST)和陇春23(LC23)衍生的216个家系F2:8RIL群体和242份国内外小麦品种(系)为试验材料。HST是甘肃干旱地区的地方品种[23],LC23是由甘肃省农业科学院作物研究所和国际玉米小麦改良中心(CIMMYT)创制的小麦品种[24]。将RIL群体分别种植于陕西杨陵(E1)、甘肃张掖(E2)、河南南阳(E3)和河南洛阳(E4)。随机区组设计3行区,行长2 m,行距25 cm,株距10 cm,按照常规标准进行田间管理。
小麦成熟后对中间行进行随机取样,选择自然风干的种子,利用万深SC-G型自动种子考种仪进行粒长、粒宽、籽粒长宽比和千粒重的测量,取单环境平均值和多环境最佳线性无偏预测值(BLUP),用于表型及遗传分析。
利用Affymetrix® Axiom平台的小麦55K SNP芯片对216个家系进行全基因组扫描,利用Affymetrix的Axiom Analysis Suite软件对原始数据进行深入分型。根据Liu等[8]使用的标记合成引物。通过55K SNP芯片获取的侧翼序列,使用PolyMarker在线平台(https://polymarker.tgac.ac.uk/)设计KASP引物,并在其5′端连接FAM或HEX荧光接头序列(FAM接头序列:5′-GAAGGTGACCAAGT TCATGCT-3′;HEX接头序列:5′-GAAGGTCGGAGTC AACGGATT-3′)。KASP反应体系为2 μL DNA、0.0448 μL引物混合物、2 μL HiGeno 2x Probe Mix B和1.9552 μL ddH2O。反应程序为95 ℃ 10 min;95 ℃ 30 s,65—55 ℃ 25 s,10个循环(每循环降低1.0 ℃);95 ℃ 30 s,55 ℃ 30 s,35个循环;4 ℃避光保存。反应结束后,用酶标仪FLUOstar Omega进行荧光扫描,并用KlusterCaller软件进行基因分型。SSR标记()的PCR反应体系为DNA 1 μL、2×Rapid Taq Master Mix 10 μL、上下游引物各1 μL和ddH2O 7 μL。PCR反应程序为95 ℃ 5 min;95 ℃ 30 s,53 ℃(1B/1R为56 ℃) 30 s,72 ℃ 30 s,30个循环;72 ℃ 5 min,4 ℃保存。
利用R中的lem4包进行遗传力计算,公式[25]为。利用Microsoft Excel统计表型数据,利用SPSS 22[26]进行方差分析、检验、检验和相关性分析。依据株系杂合率(>20%)、株系缺失率(>20%)、基因型缺失率(>20%)和偏分离率(<0.001)等参数筛选55K SNP基因分型数据,利用QTL IciMapping 4.2[27]软件的BIN功能对剩余SNP标记进行去冗余,获得Bin标记;利用JoinMap 4.0[28]LOD≥5的Kosambi函数对Bin标记构建连锁群;根据LOD值结果,使用QTL IciMapping 4.2软件的MAP功能对SNP标记排序,选用Kosambi函数转化遗传距离;最后使用Mapchart 2.3[29]软件绘制QTL遗传图谱。基于完备区间作图法(ICIM-ADD)的BIP和环境互作QTL(MET)功能进行多环境QTL定位,步长为1.0 cM,临界值为0.001,使用LOD=3.0作为检测阈值。
通过对亲本和尚头和陇春23进行表型鉴定,发现和尚头的千粒重、粒长、粒宽和籽粒长宽比均高于陇春23(表1),且在RIL群体中出现连续变异和超亲分离现象,表明籽粒相关性状存在多基因遗传,以及在双亲中均存在优异的QTL等位基因。其中,千粒重和籽粒长宽比的遗传力较高,分别为0.81和0.84。
通过对粒重相关性状进行分析(图1),粒宽与千粒重、粒长呈极显著相关性(=0.65和0.67,<0.001);粒长与千粒重、籽粒长宽比呈显著相关性(= 0.48和0.32,<0.001);而籽粒长宽比与千粒重、粒宽呈负相关性(=-0.29和-0.49,<0.001)。在不同环境间,千粒重和籽粒长宽比呈极显著相关性(= 0.45—0.66,<0.001);在南阳和洛阳试验点,粒长和粒宽相关性不显著,但在其他环境中均呈极显著相关性(=0.26—0.45,<0.001)(附图1)。表明在群体中可能存在粒重和粒型性状的主效遗传位点。
***:P<0.001。下同 The same as below
E1:陕西杨凌;E2:甘肃张掖;E3:河南南阳;E4:河南洛阳;TKW:千粒重;GL:粒长;GW:粒宽;LWR:籽粒长宽比;BLUP表示最佳线性无偏预测值;*和**分别表示在<0.05和<0.01水平差异显著。下同
E1: Yangling, Shaanxi; E2: Zhangye, Gansu; E3: Nanyang, Henan; E4: Luoyang, Henan;TKW: 1000-grain weight; GL: grain length; GW: grain width; LWR: grain length-width ratio; BLUP represents best linear unbiased prediction; * and ** indicated significant difference at<0.05 and<0.01. The same as below
通过对原始数据过滤,共获得16 529个SNP标记,利用BIN功能去冗余后,获得2 672个Bin标记,构建遗传图谱,其全长4 543 cM,包含22个连锁群,Bin标记之间的平均遗传距离为1.70 cM,最大遗传距离为31.82 cM(6D染色体),覆盖小麦21条染色体(表2),每条染色体上的Bin标记数目不等。7A染色体由2个连锁群组成,其余染色体均为一个连锁群。此外,5D染色体的遗传长度最长,为305.92 cM;4B染色体最短,为122.92 cM。位于A、B和D基因组上的Bin标记数分别为1 025、1 023和624个;SNP标记数分别为6 374、6 884和3 271个;遗传长度分别为1 509.26、1 423.17和1 610.57 cM。
根据参考基因组对遗传图谱和物理图谱进行共线性分析,结果表明,该遗传图谱与中国春参考基因组物理图谱之间具有良好的共线性,标记顺序与小麦基因组组装的标记顺序相对一致,相关系数为0.77—0.99(<0.001,图2)。每条染色体的遗传重组表现不平衡现象,染色体端粒区域重组率较高,而中部区域重组率较低,整体呈U型分布;染色体的遗传位置随着物理位置的增加而增加,两端斜率较大,使得共线图整体呈现出S型;每条染色体的Bin标记数目基本都符合两端较多,而中间较少的特点。整体来看,染色体两端为重组热点区,而中间部分为重组冷点区。其中,在4B和5A的中间部分没有SNP标记的存在(>200 Mb),但依然为同一条连锁群,说明该区域为重组冷点区。
红色散点表示共线性,黑色直方图表示Bin标记在参考基因组上的重组率。**:P<0.01,***:P<0.001
利用和尚头/陇春23的RIL群体共检测到51个粒重相关的QTL,单位点可解释0.44%—20.13%表型变异,LOD值为3.00—59.43。3个及以上环境稳定表达的主效QTL有4个,分布在2D、5A、6B和7D染色体上(表3、图3和附表1)。
共检测到9个千粒重QTL,单位点可解释3.84%— 13.26%表型变异,LOD值为3.16—11.89;其中,(加性效应来自陇春23)和(加性效应来自和尚头)可在3个以上环境中被检测到,表型变异解释率分别为7.19%— 12.92%和7.53%—13.26%,LOD值分别为4.33—11.89和4.63—10.71。
共检测到13个粒长QTL,单位点可解释0.44%— 17.86%表型变异,LOD值为3.03—59.43;其中,(加性效应来自和尚头)可在3个环境中被检测到,表型变异解释率为4.56%—17.86%,LOD值为3.93—59.43。
共检测到15个粒宽QTL,单位点可解释3.41%— 12.36%的表型变异,LOD值为3.00—16.00;其中(加性效应来自陇春23)和(加性效应来自和尚头)可在2个环境中被检测到,表型变异解释率分别为7.28%— 12.36%和7.85%—20.13%,LOD值分别为4.41—10.14和4.76—16.00。
共检测到14个籽粒长宽比QTL,单位点可解释2.37%—14.51%的表型变异,LOD值为3.08—12.93;其中,(加性效应来自陇春23)可在3个环境中被检测到,表型变异解释率为4.87%— 11.83%,LOD值为4.87—9.13。
表3 粒重相关性状的部分QTL
1)加性效应为正说明增效效应来源于和尚头,加性效应为负说明增效效应来源于陇春23
1)Positive additive effect indicated that the positive allele derived from HST, and negative additive effect indicated that the positive allele derived from LC23
图3 粒重相关性状QTL的染色体分布
共发现4个QTL簇,分别位于2D(、和)、4B(和)、5A(和)和7D(、和)染色体上,表明可能存在一因多效QTL。
QTL×环境(QE)互作分析显示,所有多环境稳定的QTL均能被检测到,进一步表明QTL的稳定性(附表2)。在QE互作分析中,的总表型变异解释率为5.76%,其中,加性效应的表型变异解释率为4.91%,LOD值为19.93;的总表型变异解释率为6.56%,其中,加性效应的表型变异解释率为5.14%,LOD值为20.01;的总表型变异解释率为11.82%,其中,加性效应的表型变异解释率为6.14%,LOD值为8.88。
在不同环境条件下,携带优异等位基因的株系可以提高千粒重6.10%—10.77%(<0.01),增加粒宽3.23%—6.01%(<0.001);携带优异等位基因的株系可以提高千粒重4.31%—8.25%(<0.05),增加粒宽4.41%—4.84%(<0.05);然而,同时携带和优异等位基因的株系却对粒长未产生显著影响。通过进一步探究和对株高和抽穗期的影响,结果表明,在不同环境条件下,携带优异等位基因的株系可以降低株高6.32%—6.33%(<0.05),缩短抽穗期3.61%—5.10%(<0.001);携带优异等位基因的株系可以降低株高5.39%—6.30%(<0.001),缩短抽穗期1.56%—1.64%(<0.05)(附表3)。
方差分析表明(表4),和存在极显著的互作效应(<0.01);受环境影响较大,其环境互作对粒宽和粒长有显著影响(<0.01);和对千粒重、粒宽和籽粒长宽比有显著影响,对粒长无显著影响(<0.001)。聚合效应表明(图4),同时携带和优异等位基因株系的千粒重和粒宽可显著增加13.07%(<0.05)和4.46%(<0.05)。
表4 不同环境下Qtkw.nwafu-2D.1和Qtkw.nwafu-7D的方差分析
+:相应侧翼标记的等位基因来自和尚头的株系;-:表明相应侧翼标记的等位基因来自陇春23的株系。不同小写字母表示差异显著
根据目标区间两侧的序列开发KASP标记,其中,在RIL群体亲本之间和子代之间均具有多态性,利用242份国内外小麦品种(系)验证位点(附图2),结果表明,该位点分型明显,在不同环境条件下可以增加粒长3.33%—4.59%(<0.001)(图5),增加千粒重5.70%—10.35%(<0.05)(附表3),可用于分子标记辅助选择育种。
六倍体小麦是由野生二粒小麦和节节麦自然杂交形成的,虽然D亚基因组的遗传变异相对较少,但对六倍体小麦的籽粒大小和形状具有明显的影响,尤其是2D和7D染色体对小麦改良起到了积极的正向调节作用[30]。本研究在2D和7D染色体上各检测到一个QTL簇,包含千粒重、粒宽和籽粒长宽比QTL,说明2D和7D染色体对小麦粒重和粒型具有重要影响。位于SNP标记和之间,根据其物理位置推测,与Ma等[11]、Yu等[31]和Kumar等[6]定位结果一致;位于SNP标记和之间,其物理区间与前人定位结果重合[6, 8, 32-35],且为相同位点。由于和的物理区间分别与已克隆的光周期基因和开花基因重合,故使用和的标记对RIL群体进行检测,根据分型结果(附图3和附表4),将标记定位到和之间,因此,推测这两个位点效应可能与和相关。光周期不敏感型等位基因影响下游基因和的表达,进而促进小麦提前开花和加快抽穗[17];对调节小麦开花起主要作用[20],影响抽穗和籽粒发育[36];与小麦春化基因紧密连锁[37],且受光周期途径调控[38],进而相互协调共同参与小麦生长发育。综上,本研究在和尚头/陇春23群体中发现的和位点分别与和相关。
a:杨陵;b:南阳;c:洛阳a: Yangling; b: Nanyang; c: Luoyang
粒长相关位点被定位在分子标记和之间,物理位置为0.65—0.75 Mb,可在3个环境中被检测到,平均表型变异解释率为9.76%,是主效QTL。根据前人研究结果,与Wei等[39]在单环境中检测到的位点部分重合,可能是同一位点。Yu等[31]在2A染色体检测到的千粒重QTL与区间重叠,该位点可在2个环境中被检测到,表型变异解释率为4.3%—13.6%,LOD值为3.5—14.0。其余QTL未被报道,单位点可解释5.69%—11.90%的表型变异,LOD值为3.30—9.57,均为新QTL。考虑到1B/1R易位系对小麦籽粒性状的影响,本研究使用1B/1R的SSR功能标记对RIL群体进行检测,发现双亲及衍生群体中均存在基因型差异,但检验结果显示,1B/1R易位系未对千粒重产生显著影响。
和存在极显著的QTL互作,可能与共同调控光周期途径和春化途径的基因有关[40]。和对千粒重、粒宽、株高和抽穗期均有显著影响;优良等位基因的聚合是育种家创新种质资源和提高小麦产量的有效途径[41],在RIL群体中,聚合和位点对千粒重和粒宽均有显著的加性效应,说明它们可能共同参与小麦生长发育的调节,并对小麦籽粒的发育影响很大,因此,在小麦育种选择和品种改良中具有重要的应用价值。此外,本研究还发现,与相比,受环境影响更小,这与携带品种的千粒重稳定性更好[16]相一致。本研究还开发了的共分离KASP分子检测标记,并在242份小麦种质中进行了验证,即该标记与粒重和粒长性状显著相关,为的分子辅助选择育种奠定了基础。
利用和尚头/陇春23衍生的RIL群体共检测到51个粒重相关性状的QTL,其中,2D和7D染色体上存在效应明显的QTL簇,与千粒重、粒宽、株高和抽穗期等多个性状显著关联。()和()之间存在显著的加性互作效应,2个位点的聚合能够促进千粒重和粒宽的提高。针对主效粒长位点开发了共分离的KASP标记,可用于分子标记辅助选择育种。
致谢:文章得到刘胜杰同学和黄硕同学的帮助,在此表示感谢。
[1] SHEWRY P R, HEY S J. The contribution of wheat to human diet and health. Food and energy security, 2015, 4(3): 178-202.
[2] LI S D, WANG L, MENG Y N, HAO Y F, XU H X, HAO M, LAN S Q, ZHANG Y J, LV L J, ZHANG K, PENG X H, LAN C X, LI X P, ZHANG Y L. Dissection of genetic basis underpinning kernel weight-related traits in common wheat. Plants (Basel, Switzerland), 2021, 10(4): 713.
[3] SHIFERAW B, SMALE M, BRAUN H J, DUVEILLER E, REYNOLDS M, MURICHO G. Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security. Food Security, 2013, 5(3): 291-317.
[4] HU J M, WANG X Q, ZHANG G X, JIANG P, CHEN W Y, HAO Y C, MA X, XU S S, JIA J Z, KONG L R, WANG H W. QTL mapping for yield-related traits in wheat based on four RIL populations. Theoretical and Applied Genetics, 2020, 133(3): 917-933.
[5] ZHANG J J, SHE M Y, YANG R C, JIANG Y J, QIN Y B, ZHAI S N, BALOTF S, ZHAO Y, ANWAR M, ALHABBAR Z, JUHÁSZ A, CHEN J S, LIU H, LIU Q E, ZHENG T, YANG F, RONG J K, CHEN K F, LU M Q, ISLAM S, MA W Y. Yield-related QTL clusters and the potential candidate genes in two wheat DH populations. International Journal of Molecular Sciences, 2021, 22(21): 11934.
[6] KUMAR A, MANTOVANI E E, SEETAN R, SOLTANI A, ECHEVERRY-SOLARTE M, JAIN S, SIMSEK S, DOEHLERT D, ALAMRI M S, ELIAS E M, KIANIAN S F, MERGOUM M. Dissection of genetic factors underlying wheat kernel shape and size in an Elite×Nonadapted cross using a high density SNP linkage map. Plant Genome, 2016, 9(1): 55.
[7] CAO J J, SHANG Y Y, XU D M, XU K L, CHENG X R, PAN X, LIU X, LIU M L, GAO C, YAN S N, YAO H, GAO W, LU J, ZHANG H P, CHANG C, XIA X C, XIAO S H, MA C X. Identification and validation of new stable QTLs for grain weight and size by multiple mapping models in common wheat. Frontiers in Genetics, 2020, 11: 584859.
[8] LIU H, ZHANG X T, XU Y F, MA F F, ZHANG J P, CAO Y W, LI L H, AN D G. Identification and validation of quantitative trait loci for kernel traits in common wheat (L.). BMC Plant Biology, 2020, 20(1): 529.
[9] PANG Y L, LIU C X, WANG D F, ST AMAND P, BERNARDO A, LI W H, HE F, LI L Z, WANG L M, YUAN X F, DONG L, SU Y, ZHANG H R, ZHAO M, LIANG Y L, JIA H Z, SHEN X T, LU Y, JIANG H M, WU Y Y, LIU S B. High-resolution genome-wide association study identifies genomic regions and candidate genes for important agronomic traits in wheat. Molecular Plant, 2020, 13(9): 1311-1327.
[10] XIN F, ZHU T, WEI S, HAN Y, ZHAO Y, ZHANG D, MA L, DING Q. QTL mapping of kernel traits and validation of a major QTL for kernel length-width ratio using SNP and bulked segregant analysis in wheat. Scientific Reports, 2020, 10(1): 25.
[11] MA J, ZHANG H, LI S Q, ZOU Y Y, LI T, LIU J J, DING P Y, MU Y, TANG H P, DENG M, LIU Y X, JIANG Q T, CHEN G Y, KANG H Y, LI W, PU Z E, WEI Y M, ZHENG Y L, LAN X J. Identification of quantitative trait loci for kernel traits in a wheat cultivar Chuannong16. BMC Genetics, 2019, 20(1): 77.
[12] QU X R, LI C, LIU H, LIU J J, LUO W, XU Q, TANG H P, MU Y, DENG M, PU Z E, MA J, JIANG Q T, CHEN G Y, QI P F, JIANG Y F, WEI Y M, ZHENG Y L, LAN X J, MA J. Quick mapping and characterization of a co-located kernel length and thousand-kernel weight-related QTL in wheat. Theoretical and Applied Genetics, 2022, 135(8): 2849-2860.
[13] YANG Y, AMO A, WEI D, CHAI Y M, ZHENG J, QIAO P F, CUI C G, LU S, CHEN L, HU Y G. Large-scale integration of meta-QTL and genome-wide association study discovers the genomic regions and candidate genes for yield and yield-related traits in bread wheat. Theoretical and Applied Genetics, 2021, 134(9): 3083-3109.
[14] 张香宇. 小麦RHL32籽粒发育相关基因克隆及其与TaRPP13L1多效性功能初析[D]. 杨凌: 西北农林科技大学, 2022.
ZHANG X Y.Cloning of gene related to grain development in wheat RHL32 and pleiotropic function dissection of the candiated genes and TaRPP13L1[D]. Yangling: Northwestern Agriculture and Foresty University, 2022. (in Chinese)
[15] YANG F P, LIU G Y, WU Z Y, ZHANG D X, ZHANG Y F, YOU M S, LI B Y, ZHANG X H, LIANG R Q. Cloning and functional analysis of TaWRI1Ls, the key genes for grain fatty acid synthesis in bread wheat. International Journal of Molecular Sciences, 2022, 23(10): 5293.
[16] 朱雪成. 春化和光周期基因在江苏小麦品种中的分布及其对农艺性状的效应分析[D]. 扬州: 扬州大学, 2019.
ZHU X C. Distribution of vernalization and photoperiod genes in Jiangsu wheat cultivars and their effects on agronomic traits [D]. Yangzhou: Yangzhou University, 2019. (in Chinese)
[17] BEALES J, TURNER A, GRIFFITHS S, SNAPE J W, LAURIE D A. Ais misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (L.). Theoretical and Applied Genetics, 2007, 115(5): 721-733.
[18] NISHIDA H, YOSHIDA T, KAWAKAMI K, FUJITA M, LONG B, AKASHI Y, LAURIE D A, KATO K. Structural variation in the 5′ upstream region of photoperiod-insensitive alleles Ppd-A1a and Ppd-B1a identified in hexaploid wheat (L.), and their effect on heading time. Molecular Breeding, 2013, 31(1): 27-37.
[19] PUGSLEY A T. A genetic analysis of the spring-winter habit of growth in wheat. Australian Journal of Agricultural Research, 1971, 22(1): 21.
[20] YAN L, FU D, LI C, BLECHL A, TRANQUILLI G, BONAFEDE M, SANCHEZ A, VALARIK M, YASUDA S, DUBCOVSKY J. The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(51): 19581-19586.
[21] SHIMADA S, OGAWA T, KITAGAWA S, SUZUKI T, IKARI C, SHITSUKAWA N, ABE T, KAWAHIGASHI H, KIKUCHI R, HANDA H, MURAI K. A genetic network of flowering-time genes in wheat leaves, in which an APETALA1/FRUITFULL-like gene, VRN1, is upstream of FLOWERING LOCUS T. The Plant Journal, 2009, 58(4): 668-681.
[22] MORENO-SEVILLA B, BAENZIGER P S, PETERSON C J, GRAYBOSCH R A, MCVEY D V. The 1BL/1RS translocation: Agronomic performance of F3-derived lines from a winter wheat cross. Crop Science, 1995, 35(4): 1051-1055.
[23] 王兴荣, 张彦军, 苟作旺, 李玥, 陈伟英, 祁旭升. 甘肃“和尚头”小麦调查报告. 甘肃农业科技, 2015(12): 49-52.
WANG X R, ZHANG Y J, GOU Z W, LI Y, CHEN W Y, QI X S. Investigation report of wheat Gansu “Heshangtou”. Gansu Agricultural Science and Technology, 2015(12): 49-52. (in Chinese)
[24] 袁俊秀, 杨文雄. 丰产广适优质春小麦新品种——陇春23号. 麦类作物学报, 2009, 29(4): 740.
YUAN J X, YANG W X. Longchun 23, a new spring wheat variety with high yield, wide adaptability and high quality. Journal of Triticeae Crops, 2009, 29(4): 740. (in Chinese)
[25] 王建康, 盖钧镒. 利用杂种F2世代鉴定数量性状主基因-多基因混合遗传模型并估计其遗传效应. 遗传学报, 1997, 24(5): 432-440.
WANG J K, GAI J Y. Identification of major gene and polygene mixed inheritance model and estimation of genetic parameters of a quantitative trait from F2progeny. Acta Genetica Sinica, 1997, 24(5): 432-440. (in Chinese)
[26] ALLEN P, BENNETT K. SPSS statistics version 22: A practical guide. 2014.
[27] MENG L, LI H H, ZHANG Y L, WANG J K. QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. The Crop Journal, 2015, 3(3): 269-283.
[28] OOIJEN J, van't Verlaat J W, Tol J, Dalén J, Buren J, Meer J M, Krieken J V, Kessel J, Van O, Voorrips R, Heuvel L. JoinMap®4, Software for the calculation of genetic linkage maps in experimental populations. Biology, 2006.
[29] VOORRIPS R E. MapChart: Software for the graphical presentation of linkage maps and QTLs. Journal of Heredity, 2002, 93(1): 77-78.
[30] ZHAO G Y, ZOU C, LI K, WANG K, LI T B, GAO L F, ZHANG X X, WANG H J, YANG Z J, LIU X, JIANG W K, MAO L, KONG X Y, JIAO Y N, JIA J Z. Thegenome reveals multiple impacts of transposons. Nature Plants, 2017, 3(12): 946-955.
[31] YU M, MAO S L, HOU D B, CHEN G Y, PU Z E, LI W, LAN X J, JIANG Q T, LIU Y X, DENG M, WEI Y M. Analysis of contributors to grain yield in wheat at the individual quantitative trait locus level. Plant Breeding, 2018, 137(1): 35-49.
[32] RÖDER M S, HUANG X Q, BÖRNER A. Fine mapping of the region on wheat chromosome 7D controlling grain weight. Functional & Integrative Genomics, 2008, 8(1): 79-86.
[33] HUANG X Q, CÖSTER H, GANAL M W, RÖDER M S. Advanced backcross QTL analysis for the identification of quantitative trait loci alleles from wild relatives of wheat (L.). Theoretical and Applied Genetics, 2003, 106(8): 1379-1389.
[34] MIR R R, KUMAR N, JAISWAL V, GIRDHARWAL N, PRASAD M, BALYAN H S, GUPTA P K. Genetic dissection of grain weight in bread wheat through quantitative trait locus interval and association mapping. Molecular Breeding, 2012, 29(4): 963-972.
[35] CHEN Z Y, CHENG X J, CHAI L L, WANG Z H, BIAN R L, LI J, ZHAO A J, XIN M M, GUO W L, HU Z R, PENG H R, YAO Y Y, SUN Q X, NI Z F. Dissection of genetic factors underlying grain size and fine mapping of QTgw.cau-7D in common wheat (L.). Theoretical and Applied Genetics, 2020, 133(1): 149-162.
[36] LIU H Y, SONG S, XING Y Z. Beyond heading time: FT-like genes and spike development in cereals. Journal of Experimental Botany, 2019, 70(1): 1-3.
[37] 韩领锋, 亢玲, 张博, 王宪国, 王中华, 张晓科, 陈东升. 小麦光周期基因在我国不同麦区中的组成分布. 麦类作物学报, 2016, 36(12): 1617-1622.
HAN L F, KANG L, ZHANG B, WANG X G, WANG Z H, ZHANG X K, CHEN D S. Composition and distribution of wheat photoperiod genes in different wheat regions in China. Journal of Triticeae Crops, 2016, 36(12): 1617-1622. (in Chinese)
[38] MOCKLER T, YANG H Y, YU X H, PARIKH D, CHENG Y C, DOLAN S, LIN C. Regulation of photoperiodic flowering byphotoreceptors. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(4): 2140-2145.
[39] WEI J, FANG Y, JIANG H, WU X T, ZUO J H, XIA X C, LI J Q, STICH B, CAO H, LIU Y X. Combining QTL mapping and gene co-expression network analysis for prediction of candidate genes and molecular network related to yield in wheat. BMC Plant Biology, 2022, 22(1): 288.
[40] 吕波. 植物开花基因FT的遗传转化及其参与开花调控的研究[D]. 泰安: 山东农业大学, 2014.
Lü B. Genetic transformation of plant flowering gene FT and its involvement in flowering control [D]. Taian: Shandong Agricultural University, 2014. (in Chinese)
[41] LI T, DENG G B, SU Y, YANG Z, TANG Y Y, WANG J H, ZHANG J Y, QIU X, PU X, YANG W Y, LI J, LIU Z H, ZHANG H L, LIANG J J, YU M Q, WEI Y M, LONG H. Genetic dissection of quantitative trait loci for grain size and weight by high-resolution genetic mapping in bread wheat (L.). Theoretical and Applied Genetics, 2022, 135(1): 257-271.
QTL Mapping and Molecular Marker Development of traits related to Grain weight in Wheat
ZHANG ZeYuan1, LI Yue2, ZHAO WenSha1, GU JingJing3, ZHANG AoYan1, ZHANG HaiLong1, SONG PengBo1, WU JianHui1, ZHANG ChuanLiang1, SONG QuanHao4, JIAN JunTao5, SUN DaoJie1, WANG XingRong2
1College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi;2Institute of Crop Science, Gansu Academy of Agricultural Sciences, Lanzhou 730000;3Luoyang Academy of Agriculture and Forestry Sciences, Luoyang 471023, Henan;4Zhumadian Academy of Agricultural Sciences, Zhumadian 463000, Henan;5Nanyang Academy of Agricultural Sciences, Nanyang 473000, Henan
【Objective】The yield of wheat, the second-highest-yielding food product in the world, has a major impact by grain weight. This research used materials from a recombinant inbred line (RIL) population derived from Heshangtou (HST) and Longchun 23 (LC23). Based on 55K SNP genotype data, QTL mapping was performed for traits related to grain weight of wheat, and co-segregation markers of major grain length QTL were developed and verified to provide reference for molecular marker assisted selection breeding. 【Method】The wheat 55K SNP microarray was used to genotype parents and RIL populations, and a high density genetic linkage map was constructed, and its correlation with Chinese spring reference genome IWGSC RefSeq v1.0 was analyzed.QTL mapping of traits related to grain weight in multiple environments based on inclusive composite interval mapping method.The analysis of variance of major effect QTLs were performed to judge the additive interaction effect among different QTLs, and to analyse its effect on traits related to grain weight.At the same time, the corresponding kompetitive allele specific PCR marker was developed according to the closely linked SNP loci of major QTL for grain length, and verified in 242 wheat accessions worldwide.【Result】In this study, a high density genetic map of Heshangtou/Longchun 23 RIL population was constructed, with full length 4 543 cM, including 22 linkage groups, covering 21 chromosomes of wheat, and the average genetic distance was 1.7 cM.There was a significant correlation between genetic map and physical map, and the Pearson correlation coefficient were 0.77-0.99 (<0.001).A total of 51 QTLs related to grain weight were detected, among them, 4 stable major QTLs were found in multi-environments (three or more environments) and distributed on 2D, 5A, 6B and 7D chromosomes.According to the physical interval and functional markers, it is inferred that stable major QTLsandare photoperiod geneand flowering gene, respectively. The analysis of variance shows that there is a significant interaction between them.The favorite alleles polymerization ofandcan significantly increase thousand grain weight and grain width of wheat.In addition, the corresponding KASP molecular detection markerwas developed based on the co-segregated SNP of the major locusfor grain length,which was significantly correlated with grain length and grain weight traits in a diversity panel comprising of 242 wheat accessions, and could increase grain length by 3.33% to 4.59% and grain weight 5.70% to 10.35% in different environments (<0.001). 【Conclusion】There are several genetic loci that affect traits linked to grain weight in Heshangtou (HST) and Longchun 23 (LC23), andanddramatically increased thousand grain weight and grain width through additive interaction effects.is significantly correlated with grain weight and grain length, and its co-segregated molecular markercan be used in molecular marker assisted selection breeding.
wheat; thousand-grain weight; QTL; KASP marker; molecular marker-assisted selection breeding
2023-03-28;
2023-04-20
陕西省“两链”融合重点专项(2023KXJ-011)
张泽源,E-mail:18238768351@163.com。通信作者孙道杰,E-mail:sunwheat@nwsuaf.edu.cn。通信作者王兴荣,E-mail:wxr_0618@163.com
(责任编辑 李莉)