董旭,褚玥,童舟,孟丹丹,孙明娜,周亮亮,王鸣华,段劲生
(1安徽省农业科学院植物保护与农产品质量安全研究所/农业农村部农产品质量安全风险评估实验室(合肥),合肥 230001;2南京农业大学植物保护学院,南京 210095)
农药目前仍然是保障粮食生产的重要农业投入品,在过去的一个世纪里,随着全球科技水平提升,工业化和信息化的发展,人口呈爆炸式增长,从1900 年的15 亿增长至2003 年的71 亿,预计到2030 年全球人口增长至83 亿,急剧增长的人口加剧了对粮食的需求,与此同时全球可耕种面积逐渐减少,气候变暖导致病虫草害发生频率增加,人口增长的巨大压力和复杂种植环境下如何保障粮食供应安全是当今全球面临的重大民生问题[1]。而农药在控制有害生物、保障粮食安全、增加作物产量等方面做出了显著贡献,全球每年可挽回约30%的粮食损失[2]。随着规模化种植的推广与发展,农药使用量总体呈增长趋势,全球每年平均使用200 万t[3],农业耕作时,由于农药不合理使用、农药抗性、环境因素等限制,现有农药有效利用率低于30%[4],农药进入环境介质后在微生物、光照、温度等条件影响下发生降解、迁移等,大部分农药最终通过各种形式进入土壤[5],农药污染土壤会导致农业土壤的物理化学性质波动,对土壤理化性质、微生物种群、酶活等土壤性能指标产生负面影响[6]。大量数据表明农药污染土壤可导致农业土壤功能紊乱,干扰土壤中的微生物活动、群落丰度和结构,造成负面影响[7]。此外,农药污染土壤也会对微生物活动相关的分解和分解过程产生不利影响[8]。
农药的低效广泛使用,一方面导致病虫草害抗药性风险升高[9],另一方面导致农药母体及代谢物在环境介质以及生物体样品中的频繁检出。许多流行病学研究表明,农药暴露与人类的各种健康因子直接相关,特别是对孕妇和儿童等敏感人群[10]。作为有毒化学品,农药可能会对人类造成严重的健康危害,长期接触不同种类的农药可能会引起细胞毒性变化,并严重影响肝脏和肾脏等不同身体器官的工作[11-12]。此外,农药引起的中毒可能对人类内分泌系统产生负面影响,并最终导致激素功能障碍。环境和健康学科多年的发展和研究表明,农药施用会在生物体及环境中产生累积,对人类健康产生急性、慢性和远期危害,根据世界银行和WHO 的有关统计,全球70%的疾病和40%的死亡人数与环境污染有关[13]。
因此,一些对环境友好、具有可修复性能的材料或技术成为当下国内外的研究热点。生物炭作为一种全新的材料,因具有高度芳香性、优良吸附性、高稳定性、经济性以及环境友好性,可用于固定/降解污染物,并最大限度地降低土壤污染风险,是一种性能优良的土壤污染修复材料[14]。国内外研究证明,生物炭材料添加至土壤可用于吸附/降解污染物,提高土壤微生物活性并有效降低土壤污染风险[15]。TANG 等[16-17]研究了生物炭或改性生物炭添加对毒死蜱、噻虫嗪等农药污染土壤的修复作用。此外,生物炭还可以直接或间接提高土壤微生物活性[15]、改变土壤养分保持能力及其生物有效性,改善土壤质量改变土壤物理化学特征,影响土壤结构间接改善植物生长和营养循环[18],如王平平[19]、吴迟[20]通过制备生物炭及改性生物炭研究了生物炭添加至土壤后对乙氧氟草醚、莠去津、烟嘧磺隆的环境行为影响,结果表明生物炭的添加提高了土壤对农药的吸附性,有效增加了土壤微生物菌群种类和丰度。现有研究结果表明,生物炭是一种功能强大、性能优良的土壤污染修复材料,生物炭的应用不仅可最大限度地降低与农药相关的健康风险[21],而且可以减少环境风险,增加农业收益。
生物炭是通过生物质热解制备的稳定富碳多孔材料,是有机材料在缺氧大气中热化学转化产生的多孔含碳固体,其物理化学性质适合在环境中安全、长期储存,并能改善土壤性质,同时生物炭本身作为一种顽固的碳形式,可以被看作是长期碳储存的载体。生物炭的潜在应用包括碳储备、土壤肥力改善、污染修复、农业副产品/废物回收[22]、减少温室气体排放,以及提高植物生长和粮食产量等[23]。
生物炭的特性可以通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射(XRD)和拉曼光谱等一系列表征手段进行分析。X射线光电子能谱(XPS)、傅立叶变换红外吸收光谱仪(FTIR)、元素分析仪、扫描电子显微镜(SEM)和透射电子显微镜(TEM)是用于生物炭一般表征的最常用技术[24],X 射线衍射(XRD)、拉曼光谱和能量色散光谱仪(EDS)是表征生物炭微观结构最广泛使用的方法[25],比表面积和孔结构可以使用Brunauer-Emmett-Teller(BET)方法进行分析[14]。
通过一系列表征手段,发现生物炭材料中含有丰富的氮、磷、硫、钙、镁、钾等元素,制备过程中,随小分子热解产物的气化逸出,生物炭逐渐形成多分散性孔隙结构,使其比表面积增大,同时石墨烯片层排列趋于规整,生物炭的芳香性得到提高,碳基体上形成丰富的羰基、羧基、羟基等官能团,表面官能团在生物炭作为功能材料(如催化剂、吸附剂和电极材料)的应用中起着重要作用[26]。因此生物炭具有元素含量丰富、比表面积大、孔隙复杂、静电吸引、离子交换等性能,这些特性使生物炭可以直接作为吸附剂、改良剂、催化剂和催化剂载体应用。更重要的是,生物炭不仅具有易于调整的表面功能、孔隙率,还具有负载多种金属离子、接枝官能团的特性,使得生物炭成为很有研究价值及应用前景的多功能材料,可以依据不同研究目的,通过物理、化学、生物等技术手段转化为具有不同功能的生物炭材料(图1)[27]。
图1 生物炭材料功能化及其潜在应用
生物炭是通过生物质热解制备的稳定富碳多孔材料,生物炭的吸附功能主要取决于其多孔结构以及羟基、羰基、羧基等不同种类官能团的存在[28],植物源生物质主要由半纤维素、纤维素和木质素组成,每种成分都以不同的速率通过不同的机制和途径进行热解形成不同的多孔结构和官能团,表面积和孔径分布也受到热解温度影响。温度的升高导致更多的挥发性物质从生物质表面释放,产生具有更多孔隙的碳,并显著增加生物炭的表面积。因此生物炭结构形成的总体机制取决于热解温度及生物质组分,即纤维素、半纤维素和木质素的构成比例。
纤维素、半纤维素和木质素分子结构不同,热解机制存在一定差异。纤维素热解机制的特点是聚合度降低,在热解过程中,纤维素最初解聚成低聚糖随后裂解糖苷键以产生D-吡喃葡萄糖,然后通过脱水、脱羧、芳构化和分子内缩合等途径形成固体生物炭(图2a)。半纤维素热解的机制类似于纤维素,它也从解聚形成低聚糖开始,木聚糖链糖苷键的裂解和解聚分子的重排,以产生1,4-脱氢-D-木吡喃糖-D-木吡喃糖作为半纤维素热解的中间产物。然后是木聚糖链糖苷键的裂解和解聚分子的重排,进一步经历脱水、脱羧、芳构化和分子内缩合等多种途径,形成固体生物炭(图2b)。与纤维素和半纤维素相比,木质素的结构更复杂,这导致了复杂的分解机制,自由基反应是木质素热解的主要途径和最重要的机制之一,自由基是通过β-O-4 木质素键的断裂产生的,随反应的进行自由基进一步反应,碳链增长,直至2 个自由基相互碰撞形成稳定的化合物,链式反应终止,形成固体生物炭(图2c)[27]。
图2 纤维素、半纤维素和木质素热解产生生物炭基本分子结构
通常情况下,生物炭结构在性质上主要是无定形的,具有局部结晶结构以随机方式交联的高度共轭的芳香族。当热解温度小于700℃时,随热解温度升高,生物炭的孔隙逐渐增大[29],微晶尺寸增大,整体结构变得更加有序,展示了生物质在100~700℃范围内转化为生物炭过程中动态分子结构及得率变化(图3)[30]。当热解温度超过700℃,生物炭的碳骨架结构不再稳定,不稳定的骨架导致孔隙结构塌陷,比表面积随温度的升高而减小[31]。
图3 不同热解温度下产生的生物炭的动态分子结构
吸附是影响农药在土壤中归趋的主要过程之一。吸附行为本身是一种物理化学过程,是农药分子通过土壤胶体上带电位点之间的键合、氢键、离子键和共价键以及范德华力等机制保留在固体表面的过程[32],这一过程决定了农药在环境中的累积和迁移,以及对环境生物和食品安全的影响。相关研究证实,土壤中添加生物炭,可以显著提升土壤对莠去津、烟嘧磺隆、敌草隆等除草剂的吸附性[19,33]。
生物炭对农药的吸附过程分为物理吸附和化学吸附,孔容孔径、比表面积等孔隙填充作用是影响物理吸附的因素[34],化学吸附包括分子间π-π 共轭效应,农药和生物炭之间的氢键作用力,在这种相互作用过程中农药含氧基团中的氧原子电负性大,易于和生物炭表面官能团形成氢键,农药分子也可以同时作为氢键给体和受体有利于通过氢与多种官能团(-OH、N-H、CO、C=O和C-N)相互作用成键,另一方面,生物炭富含π 电子的石墨烯表面与缺乏π 电子的带正电有机物之间的π-π电子供体-受体相互作用力也是影响化学吸附的主要因素[35]。生物炭对亲/疏水性有机化合物的吸附能力取决于表面亲水基团,自身碳化和非碳化部分、生物炭的整体性质和多孔表面[36]。影响生物炭-农药吸附行为的其他机制包括聚合物基质吸附、表面覆盖、多层吸附和毛细管孔中的冷凝[37]。由于风化过程、有机质与土壤矿物的相互作用以及土壤中微生物的氧化作用,土壤中生物炭的吸附特性会随时间而变化[20]。因此生物炭与农药的吸附关系取决于生物炭特性(芳香性、碳含量、孔隙、表面积、表面官能团、静电吸引力)[21,38]、农药特性(亲/疏水性)、土壤特性(有机质含量、pH)(图4)。
图4 生物炭与有机污染物相互作用的假定机制
现有研究表明,直接从生物质热解获得的生物炭表面功能性较差,孔隙率和表面积较低,羟基、羰基、羧基等功能性官能团非常有限[39]。这些固有的缺点限制了生物炭作为有用功能材料的广泛应用。然而,生物炭的表面功能性和孔隙率通常很容易调整,这为合成各种功能材料提供了一个很有前景的平台[40]。利用生物炭结构特性,可以通过金属盐溶液浸渍,氧化、氨化、磺化、表面掺杂等化学反应进行金属离子负载和官能团接枝,通过调整表面性质和孔结构来关注生物炭的功能化,实现生物炭表面性质的功能化。
含氧官能团,如羰基、羟基和羧基,对于提高生物炭在各种应用中的性能非常重要。例如,当生物炭用作有机污染物去除的吸附剂时,表面羟基和羧基基团可以大大提高吸附能力。这是因为这些基团通过氢键和静电吸引力等相互作用[41],此外,在表面引入含氧官能团可大大提高生物炭的亲水性,从而提高亲水性能[42]。表面氧化是在生物炭表面生成含氧官能团的最广泛使用的方法,氧化可在生物炭表面引入大量酸性含氧官能团,提高比表面积和孔容孔径。过氧化氢(H2O2)、臭氧(O3)、高锰酸钾(KMnO4)和硝酸(HNO3)是最常用的表面氧化试剂,此外用KMnO4或HNO3氧化处理可以增加生物炭的亲水性[43],通过表面氧化处理可以形成几种类型的含氧官能团,例如羧基、酚羟基、内酯和过氧化物。Fan等[44]采用HNO3/H2SO4和NaOH/H2O22 种氧化工艺氧化改性芦苇生物炭,氧化后生物炭中含氧官能团增多,氧碳比(O/C)提高,傅里叶变换红外光谱(FTIR)表征显示,氧化后生物炭表面的C-O和O-H具有较大的收缩峰,另外氧化后生物炭表面出现了破坏的沟壑和疤痕,使得其比表面积和孔隙率增大,酸氧化和碱氧化处理的生物炭比表面积分别提高了164.9%和63.0% ,吸附能力提高了28.4%和13.15%。Sanford 等[45]以木材和玉米芯为原料制备生物炭通过次氯酸钠(NaClO)和过氧化氢(H2O2)氧化,采用间歇等温线法测定对硝酸盐的吸附能力,结果表明氧化前后相比吸附容量从0.50 mg/g提高到3.97 mg/g,吸附能力提高显著。
除了含氧官能团,生物炭表面的碱性氨基也被证明可以大大提高其在有机污染物吸附等应用中的性能,表面氨化是将氨基引入到生物炭中的最广泛使用的方法之一。高温下的氨(NH3)处理是一种传统的表面氨化技术,但往往消耗大量能量,并向环境中释放氨气,造成严重污染,可以使用一些含氨基试剂进行化学改性用于生物炭的表面氨化,如使用3-氯丙胺、三(2-氨基乙基)胺、聚乙烯亚胺将氨基引入生物炭表面以获得氨基化生物炭。合成的生物炭材料具有丰富的表面氨基,对废水中重金属具有良好的吸附性能。使用这种方法,除氨基外,一些具有不同亲水性或疏水性的有机单体也可以被引入表面[46]。El-Nemr 等[47]以西瓜皮为原料制备初级生物炭,再经氨水氨化制得改性生物炭,与未经氨化生物炭对比Cr(VI)的去除率提高30%,最大吸附量达333.33 mg/g。Zhang 等[48]为了提高对Cd2+的吸附能力,将氨基通过硝化和氨化相结合的方式引入到水稻秸秆生物炭表面,通过批量、连续的Cd2+吸附实验,改性后的生物炭吸附能力提高了72.1%,验证了生物炭表面引入氨基的作用,探明吸附机理为生物炭表面氨基与溶液中Cd2+之间的配位反应。
硫磺基团(SO3H)是固体酸性材料中的主要官能团,大多数含SO3H 基团的非晶态碳材料是通过对不完全碳化的有机质进行直接磺化而合成的。生物炭作为生物质不完全碳化(热解)的产物,是一种易于合成无晶态碳基固体起始原料,用浓硫酸对生物炭进行表面磺化处理是制备生物炭基固体酸最常用的方法,磺化有助于改善生物炭的多孔结构,提高比表面积增加吸附性[24]。由于浓硫酸的强氧化能力,磺化的同时产生含氧官能团,如羧基、羰基以及羟基等,促进生物炭的其他性质进一步功能化[25]。Xie 等[49]用浓硫酸(H2SO4)、氯磺酸(ClSO3H)和对甲苯磺酸(TsOH)对生物炭样品进行磺化,通过结构表征发现磺化后生物炭表面酸性基团(如SO3H、COOH)增加显著,O/C 升高,H/C降低,芳香性和石墨性没有变化,磺化后的生物炭对螺旋霉素水解效率随总酸度、SO3H和COOH基团的增加而增加。Zhang 等[50]以芦苇秸秆为原料,采用磺化改性方法对生物炭进行改性,物理化学表征方法证实了磺化生物炭上羧基(COOH)和磺酸基(SO3H)显著增加。对芦苇生物炭和磺化芦苇生物炭的氨吸附性能进行了评价,结果表明磺化芦苇生物炭对铵离子的吸附速率远高于芦苇生物炭,磺化芦苇生物炭的最大吸附量为4.20~5.19 mg/g,显著高于芦苇生物炭(1.09~1.92 mg/g)。
将粗制生物炭浸渍于金属盐溶液中如FeCl3、CaCl2、TiO2、MgCl2等,通过煅烧法、共沉淀法,进行改性,使金属离子、金属氧化物或氢氧化物负载在生物炭表面,不仅可以提高生物炭还原性、催化性、静电吸引和络合能力[51],也可提高负载后生物炭的孔隙率和比表面积,表现出对有机污染物较好的除去效果[52]。应用铁盐溶液(Fe2O3、Fe3O4)浸渍后,煅烧法或共沉淀法制备的生物炭除具备较好的还原性、吸附性外还具有特殊的磁性[53]。磁性生物炭在吸附水中污染物方面表现出优异的性能,并且可以通过使用外部磁铁轻松分离,因此,它已被广泛用作处理污水和从水中分离小颗粒的吸附剂[54]。Bao等[51]研究了Fe、Ce、La、Al、Ti等金属元素负载生物炭,结果表明,金属元素以金属氧化物的形式修饰在生物炭表面,4 h内对四环素的催化作用分别为51.7%(空白生物炭)、90.7%(Fe-生物炭)、69.0%(Ce-生物炭)、59.9%(La-生物炭)、58.0%(Al-生物炭)、58.0%(Ti-生物炭),改性生物炭的催化活性高于空白生物炭。Zhang等[55]用玉米秸秆粉与Fe2+/Fe3+混合,在不同温度下进行热解,一步磁化炭化制备磁性生物炭,研究了磁性生物炭对环境中有机磷农药的富集能力,结果表明,磁性制备后生物炭的富集性提高显著,对有机磷农药的富集性因子从50提高至210。
为提高生物炭吸附活性,不同改性制备生物炭方法在实践中得到应用,将含氮磷酸盐、尿素、聚磷酸铵、二聚氰胺、三聚氰胺等氮杂试剂于生物质浸渍搅拌后热解,可将非金属氮(N)元素引入碳晶格中,制备成氮杂生物炭是目前较新的生物炭改性研究。氮掺杂改性后的生物炭,表面接入含氮官能团,提高了生物炭表面碱度,增加吸附位点,引入正电荷,促进各种污染物特别对极性污染物的吸附[56]。Cheng等[34]以纤维素、半纤维素等为原料,三聚氰胺为氮杂试剂采用一步法制备氮杂生物炭,结果表明氮杂生物炭对莠去津的吸附容量高达103.59 mg/g,氮杂后的吸附性主要通过吡咯N等表面官能团(-COOH、-OH)的氢键作用和π-π电子给体-受体(EDA)相互作用实现,生物炭石墨化程度高,吸附性越强。Zhou等[57]以植物为原料,通过添加含氮磷酸盐制备新型氮掺生物炭,结果表明,氮(N)杂原子可以成功掺杂在生物炭表面,达4.16%,改性可显著提高生物炭的产量最高达60%,氮杂生物炭对甲苯表现良好吸附性,吸附量最高达496.2 mg/g,显著高于对照未改性生物炭的6.5 mg/g。
生态环境中农药、重金属、抗生素和无机染料是目前主要环境污染物,急需开展有效阻控技术研究,而生物炭就是一种可靠、可持续的材料,可以广泛用于处理环境中有机/无机污染物。生物炭及其改性材料从环境基质中吸附农药、重金属、抗生素和无机染料的能力,归因于其比表面积大、表面官能团丰富、多级孔径分布等理化性质。生物炭材料制备简单,根据污染物的不同性质易于扩展,具有一系列实际应用就价值。目前生物炭基功能材料在催化、储能和转化以及环境保护等领域的应用已受到了广泛关注。
虽然生物炭材料表现优异,但是在农药吸附研究方向还需要加强,生物炭作为土壤改良剂,高吸附性导致部分农药解离困难,药效降低,因此研究生物炭降低农药污染的同时保证药效是非常必要的;另外人们对生物炭、农药和土壤微生物活性之间的相互作用机理知之甚少。为更好扩展生物炭材料的应用,减少农药使用量提高农药利用率,降低施用后带来的环境风险,需要进一步加强生物炭相关机理研究及功能化产品的开发,为生物炭安全合理应用提供有效的科学依据。