张文娴 邓圣福
摘要: 为研究离散非线性薛定谔方程在不动点附近的1∶1共振问题,将离散非线性薛定谔方程化为差分系统,差分系统线性算子的特征值为两重根1;然后,利用Picard迭代及时间1映射,将差分系统转换为常微分系统,推导差分系统不动点的稳定性;最后,用数学软件模拟差分系统的局部相图.研究结果表明:不动点是局部渐近稳定的.
关键词: 离散非线性薛定谔方程; 差分系统; 1∶1共振; Picard迭代; 退化平衡点; 多项式函数
中图分类号: O 175.1文献标志码: A 文章编号: 1000-5013(2023)04-0526-07
1∶1 Resonance of Discrete Nonlinear Schrdinger Equation
ZHANG Wenxian, DENG Shengfu
(School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China)
Abstract: In order to study 1∶1 resonance problem of discrete nonlinear Schrdinger equation near the fixed point, firstly, this discrete nonlinear Schrdinger equation is transformed into a difference system, the eigenvalue of the difference system linear operator is double root 1, and then, by the use of Picard iteration and the time-one map, this difference system is converted into an ordinary differential system, the stability of the fixed point of the difference system is obtained. Lastly, the local phase portraits of the difference system are also simulated by mathematical software. The result shows that the fixed point is locally asymptotically stable.
Keywords: discrete nonlinear Schrdinger equation; difference system; 1∶1 resonance; Picard iteration; degenerate equilibrium; polynomial function
離散非线性薛定谔方程在科学界受到很大的关注,Holstein[1]在1959年首次获得与时间无关的形式.Davydov[2]在研究蛋白质和其他生物材料能量转移时,推导出依赖时间的形式.Pelinovsky等[3-4]考虑一类离散非线性薛定谔方程的规范形,在反连续极限下证明了离散亮孤子和暗孤子的稳定性和不稳定性.Fitrakis等[5]讨论具有饱和非线性的动态晶格中的暗孤子,并比较其与立方非线性晶格中的暗孤子.Melvin等[6]考虑具有饱和非线性的离散薛定谔方程中行波的存在性、稳定性及动力学.Tarasov[7]得到一个可以看作是连续薛定谔方程精确离散化的方程.Khawaja等[8]导出具有3次聚焦离散非线性薛定谔方程的PN(Peierls-Nabarro)势解析公式.2019年,Lin等[9]研究一类离散非线性薛定谔方程基态解的存在性.
本文考虑如下离散非线性薛定谔方程[10],即
4 数值模拟
无控制的情形下,取ε=1,β=-0.15,μ0=4,可知常微分系统(16)的平衡点为不稳定的鞍点,差分系统(3)的不动点为不稳定的鞍点.当ε=1,β=-0.15时,系统(16)在(0,0)附近的相图,如图1所示.
当ε>0,β<0时,由系统(3)可知,对任意初值(v0,w0),迭代后(vn,wn)最终只位于第1象限或第3象限.当ε=1,β=-0.15,μ0=4时系统(3)在(0,0)附近的相图,如图2所示.图2中:set为相图.
取ε=0.5,β=0.5,μ0=4,可知常微分系统(16)的平衡点为稳定的中心,系统(3)的不动点为稳定的中心,其附近由不变曲线构成.当ε=0.5,β=0.5时,系统(16)在(0,0)附近的相图,如图3所示.当ε=0.5,β=0.5,μ0=4时,系统(3)在(0,0)附近的相图,如图4所示.
在有控制的情形下,取ε=1,β=-0.15,μ0=4,A1,1=0.15,A1,2=-1.55和ε=0.5,β=0.5,μ0=4,A1,1=0.15,A1,2=-1.55.控制系统(17)的不动点是渐近稳定的.当ε=1,β=-0.15时,控制系统(17)在(0,0)附近的相图,如图5所示.当ε=0.5,β=0.5时控制系统(17)在(0,0)附近的相图,如图6所示.
5 结束语
研究离散非线性薛定谔方程在退化不动点处的稳定性.首先,利用Picard迭代及时间1映射将差分系统转化为常微分系统,差分系统不动点的定性性质等价于常微分系统高阶退化平衡点(0,0)的定性性质,然后,利用正规形及Briot-Bouquet变换得到平衡点的性质.从而得到当ε>0,β<0时,差分系统(3)的不动点(0,0)为不稳定的鞍点;当ε>0,β>0时,差分系统(3)的不动点(0,0)为稳定的中心,其附近由不变曲线构成.最后,使用多项式函数控制离散系统,使其不动点(0,0)局部渐近稳定.参考文献:
[1] HOLSTEIN T.Studies of polaron motion: Part I.the molecular-crystal model[J].Annals of Physics,1959,8(3):325-342.DOI:10.1016/0003-4916(59)90002-8.
[2] DAVYDOVA S.Solitons in quasi-one-dimensional molecular structures[J].Soviet Physics Uspekhi,1982,25(12):898-918.DOI:10.1070/PU1982v025n12ABEH005012.
[3] PELINOVSKY D E,KEVREKIDIS P G,FRANTZESKAKIS D T.Stability of discrete solitons in nonlinear Schrdinger lattices[J].Physica D Nonlinear Phenomena,2005,212(1):1-19.DOI:10.1016/j.physd.2005.07.021.
[4] PELINOVSKY D E,KEVREKIDIS P G.Stability of discrete dark solitons in nonlinear Schrdinger lattices[J].Journal of Physics A: Mathematical and Theoretical,2008,41(18):185-206.DOI:10.1088/1751-8113/41/18/185206.
[5] FITRAKIS E P,KEVREKIDIS P G,SUSANTO H,et al.Dark solitons in discrete lattices: Saturable versus cubic nonlinearities[J].Physical Review E,2007,75(6):66608.DOI:10.1103/PhysRevE.75.066608.
[6] MELVIN T R O,CHAMPNEYS A R,KEVREKIDIS P G,et al.Travelling solitary waves in the discrete Schrdinger equation with saturable nonlinearity: Existence,stability and dynamics[J].Physica D: Nonlinear Phenomena,2008,237(4):551-567.DOI:10.1016/j.physd.2007.09.026.
[7] TARASOV V E.Exact discretization of Schrdinger equation[J].Physics Letters A,2016,380(1/2):68-75.DOI:10.1016/j.physleta.2015.10.039.
[8] KHAWAJA U A,AL-MARZOUG S M,BAHLOULI H.Peierls-Nabarro potential profile of discrete nonlinear Schrdinger equation[J].Communications in Nonlinear Science and Numerical Simulation,2017,46:74-80.DOI:10.1016/j.cnsns.2016.10.019.
[9] LIN Genghong,ZHOU Zhan,YU Jianshe.Ground state solutions of discrete asymptotically linear Schrdinger equations with bounded and non-periodic potentials[J].Journal of Dynamics and Differential Equations,2019,32:1-29.DOI:10.1007/s10884-019-09743-4.
[10] ZHU Qing,ZHOU Zhan,WANG Lin.Existence and stability of discrete solitons in nonlinear Schrdinger lattices with hard potentials[J].Physica D: Nonlinear Phenomena,2020,403(C):132326.DOI:10.1016/j.physd.2019.132326.
[11] MORGANTE A M,JOHANSSON M,KOPIDAKIS G,et al.Standing wave instabilities in a chain of nonlinear coupled oscillators[J].Physica D: Nonlinear Phenomena,2002,162(1):53-94.DOI:10.1016/S0167-2789(01)00378-5.
[12] KUZNETSOV Y A.Elements of Applied Bifurcation Theory[M].New York:Springer,1998.
[13] 張芷芬,丁同仁,黄文灶,等.微分方程定性理论[M].北京:科学出版社,1992.
[14] YU Pei,CHEN Guanrong.Hopf bifurcation control using nonlinear feedback with polynomial functions[J].International Journal of Bifurcation and Chaos,2004,14(5):1683-1704.DOI:10.1142/S0218127404010291.
[15] YU Pei.Controlling and anti-controlling Hopf bifurcations in discrete maps using polynomial functions[J].Chaos, Solitons and Fractals,2005,26(4):1231-1248.DOI:10.1016/j.chao.2005.03.009.
[16] ALI I,SAEED U,DIN Q.Bifurcation analysis and chaos control in a discrete-time plant quality and larch budmoth interaction model with Ricker equation[J].Mathematical Methods in the Applied Sciences,2019,42(18):7395-7410.DOI:10.1002/mma.5837.
(责任编辑: 陈志贤 英文审校: 黄心中)