钯催化炔烃环化合成萘并[1,2-b]苯并呋喃

2023-07-10 03:13:05孙晗黄晓程姚志湘栾天
广西科技大学学报 2023年1期

孙晗 黄晓程 姚志湘 栾天

摘 要:发展了一种以2-(2-乙炔基苯基)苯并呋喃为原料、醋酸钯作为催化剂、三苯基膦作为配体、三氟醋酸作为助剂的炔烃环化反应合成萘并[1,2-b]苯并呋喃的方法。通过考察催化剂、配体、助剂、溶剂因素等对反应产率的影响,得到了最佳反应条件:摩尔分数为5%的醋酸钯、摩尔分数为10%的三苯基膦、5当量三氟醋酸、二氯甲烷作为溶剂,反应温度为室温,在氮气保护下进行反应。产物结构经1H NMR、13C NMR和GC-MS确证。该方法反应条件温和,反应底物适用性良好,为萘并[1,2-b]苯并呋喃衍生物的合成提供了一种简便、高效的途径。

关键词:醋酸钯;三苯基膦;三氟醋酸;环化反应;萘并苯并呋喃

中图分类号:TQ251.1 DOI:10.16375/j.cnki.cn45-1395/t.2023.01.015

0 引言

萘并呋喃作为一种重要的杂环芳香化合物,具有显著的生物和药物活性,广泛存在于天然产物和药物结构中[1-3]。例如,潜在的抗癌药物结构xylarianaphthol-1中就含有萘并呋喃的骨架[4](图1)。因此,其合成方法的研究一直是化学工作者关注的热点[5-8]。通常的合成方式是以萘酚和溴代苯乙酮为原料,通过缩合反应获得,而这类方法受到反应原料结构的限制[9]。随着过渡金属催化的交叉偶联技术的发展[10-12],反应底物设计和合成水平不断得到提高,通过设计含炔基结构的反应底物进行环化反应是合成此类多环芳香烃的重要途径[13-16],此类方法在一些有机发光材料[17]和纳米石墨烯的合成中同样得到了应用[18]。然而,在已报道的方法中还存在一定的局限性:当前应用最广泛的是Swager课题组报道的方法,利用三氟醋酸和三氟甲基磺酸等强路易斯酸作为催化剂,经过类似傅-克反应过程,实现炔烃亲电环化[19-21],该方法非常简便且高效,可以用于大分子稠环芳香化合物的合成,但是反应底物仅限于含有烷氧基类强给电子基团的结构[22-24];此后,过渡金属催化体系的发展消除了强给电子基团的影响。铂、金等催化条件实现了末端炔烃的环化[25-28],而Gevorgyan课题组报道的钯催化体系使反应底物范围得到了更好的拓展,但反应更倾向于生成环外烯烃的五元环产物[29-30]。因此,利用炔烃环化合成萘并苯并呋喃仍然是一个具有挑战性的课题。研究发现,以2-(2-乙炔基苯基)苯并呋喃衍生物为原料,在醋酸钯催化条件下,以三苯基膦作为配体,三氟醋酸作为助剂,可以高效地合成萘并[1,2-b]苯并呋喃骨架。该催化体系反应条件温和,具有良好的底物适用性。

1 实验部分

1.1 仪器和试剂

HRMS使用赛默飞高分辨质谱联用仪(Thermo Scientific Q Exactive),1H NMR和13C NMR使用布魯克核磁共振仪(Bruker Avance-500),常规仪器包括:ZNCL-GS恒温磁力搅拌器、ZF-8D暗箱四用紫外分析仪、RE-52AA旋转蒸发仪、WRS-1B数字熔点仪等。实验用催化剂、配体、助剂、溶剂等试剂均为进口或分析纯试剂。

1.2 实验方法

典型合成方法(以6-苯基萘并[1,2-b]苯并呋喃2a的合成为例):在干燥的Schlenk管中依次加入2-(2-苯乙炔基苯基)苯并呋喃(1a)58.9 mg(0.20 mmol)、醋酸钯(Pd(OAc)2)2.3 mg(0.01 mmol)、三苯基膦(PPh3)5.3 mg(0.02 mmol)、三氟醋酸(TFA)114.1 mg(1.00 mmol)、二氯甲烷(DCM)2.0 mL,混合均匀后通入氮气保护,在室温下搅拌反应8 h,利用薄层层析硅胶板和GC-MS进行监测。观察到原料反应完全后,向反应液中加入10 mL乙酸乙酯,再经过碱液和饱和食盐水洗涤、乙酸乙酯萃取、无水硫酸钠干燥、旋蒸等操作后得到粗产品。最后用柱层析法分离提纯:以200 ~ 300目(75 ~ 50 μm)柱层析硅胶为填充剂,以正己烷为洗脱液,分离、收集得到目标产物2a。

2 结果与讨论

2.1 反应条件的优化

选择化合物2-(2-苯乙炔基苯基)苯并呋喃(1a)的环化反应为模板,研究了催化剂、配体、助剂和溶剂对反应产率的影响,筛选最佳反应条件。实验结果如表1所示,化合物1a在摩尔分数为10%的醋酸钯、摩尔分数为20%的三苯基膦、5当量三氟醋酸的催化体系中,以甲苯为溶剂,氮气保护,在60 ℃下反应18 h,可以以94%的收率得到目标产物2a(式(1))。随后进行了试剂控制实验,在单独缺少醋酸钯、三苯基膦和三氟醋酸的实验中,反应都无法正常进行,由此确定催化剂、配体和助剂都是反应不可以缺少的条件(Entries 1-4)。对反应溶剂进行了考察,发现该反应在非极性和弱极性的溶剂中效果较好,环己烷、1,2-二氯乙烷和二氯甲烷作为溶剂都可以顺利环化,收率分别为92%、80%和97%;而且当以二氯甲烷为溶剂时,反应温度可以降低至室温,反应时间缩短至8 h,也不会造成收率降低。在极性较大的乙腈中,反应24 h后,反应原料始终没有变化(Entries 5-8)。在此基础上,进一步考察了催化剂、配体和助剂的用量对反应的影响。当醋酸钯摩尔分数为5%、三苯基膦摩尔分数为10%时,仍然可以在8 h以96%的收率得到目标产物。但是当醋酸钯及三苯基膦摩尔分数减少到1%和2%时,收率降低至88%,反应时间需要延长至29 h。而醋酸钯摩尔分数为5%、三苯基膦摩尔分数为10%,同时三氟醋酸的用量减少到2当量时,只有64%的收率(Entries 9-11)。通过对以上反应条件的考察,得到该炔烃环化反应的最佳条件为:摩尔分数为5%的醋酸钯作为催化剂,摩尔分数为10%的三苯基膦作为配体,5当量三氟醋酸作为助剂,二氯甲烷作为溶剂,反应温度为室温,在氮气保护下进行反应。

2.2 反应底物的拓展

在摩尔分数为5%的醋酸钯、摩尔分数为10%的三苯基膦、5当量三氟醋酸及2.0 mL 二氯甲烷的催化体系中,研究了室温下不同炔烃取代基R对环化反应的影响(式(2)),考察了反应底物的适用范围。实验结果表明(表2),当R基团为苯环时,给电子取代基可以促进反应的进行,对位甲基和对位甲氧基取代的苯环分别以96%和98%的收率得到6-(对甲苯基)萘并[1,2-b]苯并呋喃(2b)和6-(对甲氧基苯基)萘并[1,2-b]苯并呋喃(2c)(Entry 1和Entry 2)。邻位上取代甲基和甲氧基之后,由于空间位阻增大,限制了反应的进行,反应时间为12 h和9 h,分别以85%和86%的收率得到6-(邻甲苯基)萘并[1,2-b]苯并呋喃(2d)和6-(邻甲氧基苯基)萘并[1,2-b]苯并呋喃(2e)(Entry 3和Entry 4)。当苯环对位连接有硝基时,由于强吸电子基团的作用,在最佳反应条件下无法环化。只有在摩尔分数为10%的醋酸钯、摩尔分数为20%的三苯基膦、5当量三氟醋酸的条件下,同时将反应温度升高至80 ℃,反应24 h,才能得到6-(对硝基苯基)萘并[1,2-b]苯并呋喃(2f),收率仅有69%(Entry 5)。由此可以推测,该反应过程为缺电子中心的中间体,给电子基团可以提高反应中间体的稳定性,从而有利于反应的进行。此外,直链脂肪烃基取代的炔烃也能够顺利地得到环化产物6-正戊基萘并[1,2-b]苯并呋喃(2g)和6-正辛基萘并[1,2-b]苯并呋喃(2h),收率分别达到92%和91%(Entry 6和Entry 7)。含有共轭烯烃结构的产物6-(环己基-1-烯)萘并[1,2-b]苯并呋喃(2i),可以以87%的收率獲得(Entry 8)。共轭烯烃结构的引入,为产物结构的进一步修饰提供了便利的渠道,从而使本方法具有更广阔的应用前景。

在以上实验结果的基础上,对2-(2-苯乙炔基苯基)苯并呋喃(1a)的炔烃环化反应的机理进行了推测(图2)。首先,醋酸钯与三苯基膦、三氟醋酸结合为配位的三氟醋酸钯正离子[18];然后在与1a结合的过程中插入苯并呋喃的2位,同时失去一个质子,形成芳香基醋酸钯中间体A,中间体A经过分子内钯迁移插入炔烃,实现炔烃关环,得到烯基钯中间体B;最后,该中间体在三氟醋酸作用下,通过质子化得到目标产物2a,同时使钯催化剂再生,重新进入催化循环。

2.3 产物结构表征

产物2a(6-苯基萘并[1,2-b]苯并呋喃)的结构(图3)及表征数据如下所示。

White solid,m.p.:128.2 ~ 131.5 ℃(uncorrected);1H NMR(500 MHz,CDCl3)δ:8.46(d,J = 8.0 Hz,1H),7.95(d,J = 8.5 Hz,1H),7.68 ~ 7.70 (m,3H),7.64 (s,1H),7.60 ~ 7.63(m,1H),7.53 ~ 7.57 (m,3H),7.48 ~ 7.51(m,2H),7.40 (t,J = 7.0 Hz,1H),7.16(t,J = 8.0 Hz,1H);13C NMR(125 MHz,CDCl3)δ:156.2,152.3,140.0,135.6,132.8,129.2,128.5,128.3,127.9,126.5,126.3,126.0,124.7,123.5,122.5,122.2,120.9,120.5,117.6,111.7;HRMS(ESI)m/z calcd for C22H15O+ (M+H)+ 295.111 7,found 295.111 8。

产物2b(6-(对甲苯基)萘并[1,2-b]苯并呋喃)的结构(图4)及表征数据如下所示。

White solid,m.p.:106.1 ~ 110.6 ℃(uncorrected);1H NMR(500 MHz,CDCl3)δ:8.45(d,J = 8.0 Hz,1H),7.94(d,J = 8.0 Hz,1H),7.68(d,J = 8.5 Hz,1H),7.53 ~ 7.63(m,6H),7.41(t,J = 7.5 Hz,1H),7.34(d,J = 8.0 Hz,2H),7.16(t,J = 7.5 Hz,1H),2.49(s,3H);13C NMR(125 MHz,CDCl3)δ:156.1,152.3,137.6,137.0,135.6,132.9,129.2,129.0,128.2,126.5,126.2,125.9,124.8,123.4,122.5,122.3,120.9,120.4,117.7,111.6,21.3;HRMS(ESI)m/z calcd for C23H17O+(M+H)+ 309.127 4,found 309.127 3。

产物2c(6-(对甲氧基苯基)萘并[1,2-b]苯并呋喃)的结构(图5)及表征数据如下所示。

White solid,m.p.:138.4 ~ 141.5 ℃(uncorrected);1H NMR(500 MHz,CDCl3)δ:8.45(d,J = 8.5 Hz,1H),7.95(d,J = 8.0 Hz,1H),7.69(d,J = 8.5 Hz,1H),7.59 ~ 7.62(m,4H),7.54 ~ 7.58(m,2H),7.40(t,J = 7.5 Hz,1H),7.17(t,J = 8.0 Hz,1H),7.06 ~ 7.09(m,2H),3.92(s,3H);13C NMR(125 MHz,CDCl3)δ:159.4,156.1,152.3,135.3,132.9,132.4,130.3,128.2,126.5,126.1,125.9,124.8,123.3,122.5,122.2,120.9,120.3,117.8,113.9,111.7,55.4;HRMS(ESI)m/z calcd for C23H17O2+(M+H)+ 325.122 3,found 325.122 4。

產物2d(6-(邻甲苯基)萘并[1,2-b]苯并呋喃)的结构(图6)及表征数据如下所示。

White solid,m.p.:138.2 ~ 142.4 ℃(uncorrected);1H NMR(500 MHz,CDCl3)δ:8.49(d,J = 8.0 Hz,1H),7.97(d,J = 8.0 Hz,1H),7.55 ~ 7.44(m,5H),7.33 ~ 7.44(m,5H),7.11(t,J = 7.5 Hz,1H),6.94(d,J = 8.0 Hz,1H),2.12(s,3H);13C NMR(125 MHz,CDCl3)δ:156.0,151.8,139.5,136.5,134.9,132.9,130.0,129.7,128.3,128.1,126.4,126.2,126.0,126.0,124.9,123.0,122.9,121.3,120.9,120.5,118.5,111.6,19.9;HRMS(ESI)m/z calcd for C23H17O+(M+H)+ 309.127 4,found 309.127 3。

产物2e(6-(邻甲氧基苯基)萘并[1,2-b]苯并呋喃)的结构(图7)及表征数据如下所示。

White solid,m.p.:125.6 ~ 128.4 ℃(uncorrected);1H NMR(500 MHz,CDCl3)δ:8.47(d,J = 8.5 Hz,1H),7.96(d,J = 8.0 Hz,1H),7.67(d,J = 8.0 Hz,1H),7.61(t,J = 7.0 Hz,1H),7.54(t,J = 7.5 Hz,1H),7.45 ~ 7.51(m,2H),7.37(t,J = 7.5 Hz,1H),7.19(t,J = 7.5 Hz,1H),7.11 ~ 7.15(m,2H),7.08(d,J = 8.5 Hz,1H),3.65(s,3H);13C NMR(125 MHz,CDCl3)δ:157.2,156.0,151.7,132.9,131.9,131.3,129.5,128.9,128.3,126.2,125.7,125.3,123.8,122.5,121.6,120.9,120.8,120.6,118.8,111.5,110.7,55.4;HRMS(ESI)m/z calcd for C23H17O2+(M+H)+ 325.122 3,found 325.122 4。

产物2f(6-(对硝基苯基)萘并[1,2-b]苯并呋喃)的结构(图8)及表征数据如下所示。

Yellow solid,m.p.:203.2 ~ 205.8 ℃(uncorrected);1H NMR(500 MHz,CDCl3)δ:8.48(d,J = 8.0 Hz,1H),8.40(d,J = 8.5 Hz,2H),7.98(d,J = 8.0 Hz,1H),7.84 ~ 7.91(m,2H),7.65 ~ 7.73(m,3H),7.61(t,J = 7.5 Hz,1H),7.41 ~ 7.46(m,2H),7.20(t,J = 8.0 Hz,1H);13C NMR(125 MHz,CDCl3)δ:156.1,152.5,147.5,146.7,138.6,132.9,132.6,130.0,128.5,127.1,127.0,126.5,124.8,124.0,123.8,122.8,121.6,121.0,121.0,116.7,112.0;HRMS(ESI)m/z calcd for C22H14NO3+(M+H)+ 340.096 8,found 340.097 3.

产物2g(6-正戊基萘并[1,2-b]苯并呋喃)的结构(图9)及表征数据如下所示。

White solid,m.p. 69.0 ~ 70.0 ℃(uncorrected);1H NMR(500 MHz,CDCl3)δ:8.39(d,J = 8.0 Hz,1H),7.99(d,J = 8.0 Hz,1H),7.88(d,J = 8.0 Hz,1H),7.70(d,J = 8.0 Hz,1H),7.43 ~ 7.56(m,4H),7.38(t,J = 7.0 Hz,1H),3.19(t,J = 8.0 Hz,2H),1.82 ~ 1.88(m,2H),1.36 ~ 1.52(m,4H),0.92(t,J = 8.0 Hz,3H);13C NMR(125 MHz,CDCl3)δ:155.9,152.2,136.0,133.0,127.7,126.1,125.7,125.0,122.9,121.9,121.7,120.8,119.9,118.4,111.8,34.2,31.9,29.4,22.6,14.1;(M+H)HRMS(ESI)m/z calcd for C21H21O+(M+H)+ 289.158 7,found 289.158 7。

产物2h(6-正辛基萘并[1,2-b]苯并呋喃)的结构(图10)及表征数据如下所示。

White solid,m.p. 80.3 ~ 83.6 ℃(uncorrected);1H NMR(500 MHz,CDCl3)δ:0.88(t,J = 7.0 Hz,3H),1.26 ~ 1.40(m,8H),1.49 ~ 1.56(m,2H),1.86 ~ 1.89(m,2H),3.24(t,J = 7.5 Hz,2H),7.41(t,J = 7.5 Hz,1H),7.48(t,J = 7.0 Hz,1H),7.52 ~ 7.59(m,3H)7.73(d,J = 8.0 Hz,1H),7.92(d,J = 8.0 Hz,1H),8.03(d,J = 7.5 Hz,1H),8.41(d,J = 8.0 Hz,1H);13C NMR(125 MHz,CDCl3)δ:14.1,22.7,29.3,29.5,29.7,29.8,31.9,34.2,111.8,118.4,119.9,120.8,121.8,122.0,122.9,125.0,125.5,125.7,126.2,127.8,133.0,136.1,152.2,155.9;HRMS(ESI)m/z calcd for C21H21O+(M+H)+ 331.205 6,found 331.205 5。

产物2i(6-(环己基-1-烯)萘并[1,2-b]苯并呋喃)的结构(图11)及表征数据如下所示。

White solid,m.p. 120.2 ~ 123.6 ℃:(uncorrected);1H NMR(500 MHz,CDCl3)δ:8.41(d,J = 8.0 Hz,1H),7.99(d,J = 7.5 Hz,1H),7.91(d,J = 8.5 Hz,1H),7.69(d,J = 8.5 Hz,1H),7.57(t,J = 8.0 Hz,1H), 7.50 ~ 7.53(m,2H),7.43(t,J = 7.5 Hz,1H),7.34(t,J = 7.5 Hz,1H),6.00 ~ 6.06(m,1H),2.50 ~ 2.52(m,2H),2.31 ~ 2.38(m,2H),1.592 ~ 1.950(m,2H),1.82 ~ 1.87(m,2H);13C NMR(125 MHz,CDCl3)δ:156.0,152.1,138.2,137.0,132.9,128.0,127.0,126.2,125.8,125.8,124.9,122.7,122.1,121.3,120.8,120.2,117.5,111.7,29.6,25.5,23.2,22.3;HRMS(ESI)m/z calcd for C21H21O+(M+H)+ 299.143 0,found 299.143 0.

3 结论

本研究实现了钯催化炔烃环化合成萘并[1,2-b]苯并呋喃衍生物。以摩尔分数为5%的醋酸钯作为催化剂,摩尔分数为10%的三苯基膦作为配体,5当量三氟醋酸作为助剂的催化体系,反应条件温和,具有较高的催化效率。催化剂用量降低至1%,配体降低至5%,仍然可以得到88%的收率,为扩大量的反应提供了参考。该反应不仅适用于给电子和拉电子取代的芳基炔烃,并且对脂肪炔烃和共轭烯烃的反应底物也同样适用,具有良好的底物适用性。为进一步合成具有生物和药物活性的萘并[1,2-b]苯并呋喃骨架提供了简便、高效的途径,具有潜在的应用价值。

参考文献

[1] LICHITSKII B V,MELEKHINA V G,KOMOGORT-SEV A N,et al. Synthesis of substituted naphtho[1,2-b]- benzofuran-7(8H)-ones via photoinduced rearrangement of 4H-chromen-4-one derivatives[J]. Organic & Biomolecular Chemistry,2020,18(13):2501-2509.

[2] MILYUTIN C V,LICHITSKY B V,MELEKHINA V G,et al. Synthesis of 1H-pyrano[4,3-b]benzofuran-1-one derivatives via photochemical cyclization of substituted 4H-furo[3,2-c]pyran-4-ones[J]. Tetrahedron Letters,2020,61(44):152469.

[3] LICHITSKII B V,MILYUTIN C V,MELEKHINA V G,et al. Photochemical synthesis of novel naphtho[1,2-b]- benzofuran derivatives from 2,3-disubstituted benzofurans[J]. Chemistry of Heterocyclic Compounds,2021,57:13-19.

[4] SRIVASTAVA V,NEGI A S,KUMAR J K,et al. Synthesis of 1-(3′,4′,5′-trimethoxy) phenyl naphtho[2,1-b]furan as a novel anticancer agent[J]. Bioorganic & Medicinal Chemistry Letters,2006,16(4):911-914.

[5] NAYAK M,SINGH D K,KIM I. Regiospecific synthesis of 5- and 6-acylated naphtho[1,2-b]benzofurans via intramolecular alkyne carbonyl metathesis[J]. Synthesis,2017,49(9):2063-2073.

[6] CHEN K,LIU S,WANG D,et al. Silver/scandium-cocatalyzed bicyclization of β-alkynyl ketones leading to benzo[c]xanthenes and naphtho[1,2-b]benzofurans[J]. The Journal of Organic Chemistry,2017,82(21):11524-11530.

[7] LICHITSKY B V,KARIBOV T T,MELEKHINA V G,et al. General approach to substituted naphtho[1,2-b]benzofurans via photochemical 6π-electrocyclization of benzofuranyl containing cinnamonitriles[J]. Tetrahedron,2021,90:132207.

[8] HUANG X C,WANG F,LIANG Y,et al. Halopalladation/decarboxylation/carbon?carbon forming domino process:synthesis of 5-halo-6-substituted benzo[b]naphtho[2,1-d]furans[J]. Organic Letters,2009,11(5):1139-1142.

[9] ABARGHOOEI M A,MOHEBAT R,KARIMI-JABERI Z,et al. Synthesis of 3-aryl-benzo[b]furans and 3-aryl-naphtho[b]furans using N-propyl-4-aza-1-azoniabicyclo[2.2.2]octane chloride immobilised on SiO2 as an efficient and reusable catalyst[J]. Journal of Chemical Research,2018,42(2):86-89.

[10] WU X F,ANBARASAN P,NEUMANN H,et al. From noble metal to Nobel Prize:palladium-catalyzed coupling reactions as key methods in organic synthesis[J]. Angewandte Chemie International Edition,2010,49(48):9047-9050.

[11] TORBORG C,BELLER M. Recent applications of palladium-catalyzed coupling reactions in the pharmaceutical,agrochemical,and fine chemical industries[J]. Advanced Synthesis & Catalysis,2009,351(18):3027-3043.

[12] SEECHURN C C C J,KITCHING M O,COLACOT T J,et al. Palladium-catalyzed cross-coupling:a historical contextual perspective to the 2010 Nobel Prize[J]. Angewandte Chemie International Edition,2012,51(21):5062-5085.

[13] MITSUDO K,SATO H,YAMASAKI A,et al. Synthesis and properties of ethene-bridged terthiophenes[J]. Organic Letters,2015,17(19):4858-4861.

[14] LU Y F,QIAO Y J,XUE H D,et al. From colorless to near-infrared S-heteroarene isomers:unexpected cycloaromatization of cyclopenta[b]thiopyran catalyzed by PtCl2[J]. Organic Letters,2018,20(21):6632-6635.

[15] YAO T F,XIA T,YAN W,et al. Copper-catalyzed chemodivergent cyclization of N-(ortho-alkynyl)aryl-pyrrole and indoles[J]. Organic Letters,2020,22(11):4511-4516.

[16] BOLDT S,PARPART S,VILLINGER A,et al. Synthesis and properties of aza-ullazines[J]. Angewandte Chemie International Edition,2017,56(16):4575-4578.

[17] QIANG P R,SUN Z B,WAN M Q,et al. Successive annulation to fully zigzag-edged polycyclic heteroaromatic hydrocarbons with strong blue-green electroluminescence[J]. Organic Letters,2019,21(12):4575-4579.

[18] BAM R,YANG W L,LONGHI G,et al. Four-fold alkyne benzannulation: synthesis,properties,and structure of pyreno[a]pyrene-based helicene hybrids[J]. Organic Letters,2019,21(21):8652-8656.

[19] JIA C G,PIAO D G,OYAMADA J Z,et al. Efficient activation of aromatic C-H bonds for addition to C-C multiple bonds[J]. Science,2000,287(5460):1992-1995.

[20] YAMAMOTO Y. Synthesis of heterocycles via transition-metal-catalyzed hydroarylation of alkynes[J]. Chemical Society Reviews,2014,43(5):1575-1600.

[21] AGUILAR E,SANZ R,FERNANDEZ-RODRIGUEZ M A,et al. 1,3-Dien-5-ynes:versatile building blocks for the synthesis of carbo- and heterocycles[J]. Chemical Reviews,2016,116(14):8256-8311.

[22] GOLDFINGER M B,CRAWFORD K B,SWAGER T M. Directed electrophilic cyclizations:efficient methodology for the synthesis of fused polycyclic aromatics[J]. Journal of the American Chemical Society,1997,119(20):4578-4593.

[23] YANG W L,MONTEIRO J H S K,DE BETTENCO-URTDIAS A,et al. Pyrenes,peropyrenes,and teropyrenes:synthesis,structures,and photophysical properties[J]. Angewandte Chemie International Edition,2016,55(35):10427-10430.

[24] YANG W L,LONGHI G,ABBATE S,et al. Chiral peropyrene:synthesis,structure,and properties[J]. Journal of the American Chemical Society,2017,139(37):13102-13109.

[25] MERLIC C A,PAULY M E. Ruthenium-catalyzed cyclizations of dienylalkynes via vinylidene intermediates[J]. Journal of the American Chemical Society,1996,118(45):11319-11320.

[26] FURSTNER A,MAMANE V. Flexible synthesis of phenanthrenes by a PtCl2-catalyzed cycloisomerization reaction[J]. The Journal of Organic Chemistry,2002,67(17):6264-6267.

[27] MAMANE V,HANNEN P,FURSTNER A. Synthesis of phenanthrenes and polycyclic heteroarenes by transition-metal catalyzed cycloisomerization reactions[J]. Chemistry-A European Journal,2004,10(18):4556-4575.

[28] MILIAN A,GARCIA-GARCIA P,PEREZ-REDONDO A,et al. Selective synthesis of phenanthrenes and dihydrophenanthrenes via gold-catalyzed cycloisomerization of biphenyl embedded trienynes[J]. Organic Letters,2020,22(21):8464-8469.

[29] CHERNYAK N,GEVORGYAN V. Exclusive 5-exo-dig hydroarylation of o-alkynyl biaryls proceeding via C?H activation pathway[J]. Journal of the American Chemical Society,2008,130(17):5636-5637.

[30] AZIZ J,FRISON G,LE MENEZ P,et al. Gold versus palladium:a regioselective cycloisomerization of aromatic enynes[J]. Advanced Synthesis & Catalysis,2013,355(17):3425-3436.

Pdlladium-catalyzed cyclization of alkynes for the synthesis of

naphtho[1,2-b]benzofuran derivatives

SUN Han1,2, HUANG Xiaocheng*1,2, YAO Zhixiang1,2, LUAN Tian1,2

(1. School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China;2. Guangxi Key Laboratory of Green Processing of Sugar Resources (Guangxi University of Science and Technology), Liuzhou 545006, China)

Abstract: A palladium acetate-catalyzed cyclization of 2-(2-ethynylphenyl)benzofurans for the synthesis of naphtho[1,2-b] -benzo-furans was developed. This method used triphenylphosphine as ligand and trifluoroacetic acid as additive, respectively. After screening the catalyst, ligand, additive and solution, the optimized reaction condition was obtained: 5% palladium acetate(mole fraction), 10% triphenyl phosphine(mole fraction), 5 equivalent trifluoroacetic acid, dichloromethane as solvent, reaction temperature was room temperature with nitrogen protection. The structures were confirmed by 1H NMR, 13C NMR and GC-MS. This reaction provides a simple and efficient route for the synthesis of naphtho[1,2-b]benzofuran derivatives with mild conditions and broad substrate scope.

Key words: palladium acetate; triphenylphosphine; trifluoroacetic acid; cyclization; naphthobenzofuran

(責任编辑:于艳霞)