任天翔 孙潇潇 滕晓波 石佩玉 戚栋明 马金星 赵德方 占海华
摘要: 可手撕纺织品作为近年来新型纺织材料的研究热点之一,人们对其可撕裂性能和服用性能提出了更高的要求。文章分别以低黏度聚酯(LVPET)和水溶性聚酯(COPET)作为皮层和芯层,通过熔体复合纺丝工艺制备低强度皮芯复合FDY长丝。通过光学显微镜观察复合纤维的横截面皮芯结构形态,确定合适的原料组分配比,优化了纺丝温度、牵伸倍数、纺丝速度等工艺参数;进一步地,对所制备纤维的取向度及拉伸性能进行了测试分析。研究结果表明,LVPET与COPET螺杆挤出机各区温度分别为285 ℃/285 ℃/285 ℃/285 ℃/285 ℃和284 ℃/284 ℃/284 ℃/284 ℃/285 ℃,LVPET与COPET纺丝箱体温度分别为282 ℃和280 ℃,第二热辊温度为90~115 ℃、LVPET与COPET的质量比为50︰50、牵伸倍数为2.7、纺丝速度为3 000 m/min时,制得的171 dtex皮芯型复合长丝的可纺性及力学性能良好,满足可手撕纺织品对纤维强度的要求。
关键词: 低强度纤维;低黏度聚酯;水溶性聚酯;皮芯型复合长丝;熔体复合纺丝工艺;可手撕纺织品
中图分类号: TS101.921
文献标志码: A
文章编号: 1001-7003(2023)04-0038-06
引用页码:
041106
DOI: 10.3969/j.issn.1001-7003.2023.04.006(篇序)
随着材料科技的迅速发展和市场需求的不断提高,国内外出现了越来越多的新型纺织材料。其中,可手撕纺织材料作为一种新型纺织品,可用于可撕医用纱布、绷带、一次性可撕包装袋、标签布、电子胶带等产品的制备[1],使用者可以从任意方向将其撕开,使用过程方便快捷,具有广阔的发展与应用空间。可手撕纺织品主要是由低强度的纤维织成,且断裂强度要求在2.0 cN/dtex左右,但常规化学纤维断裂强度一般在2.5 cN/dtex以上,聚酯类纤维更是在3.0 cN/dtex以上,因此需采用特殊的制备工艺来满足低强度性能的要求。
目前市场上可手撕纺织品的制备方法主要有三种。一种是在化纤原料中添加化学助剂和胶黏剂并通过非织造技术制得无纺布材料,但该材料耐久性、耐热耐光性、吸湿透气性等性能较差,限制了其在各个领域的应用。另一种是对化纤母粒或纤维进行物理和化学改性处理,制得的织物既可达到可
撕裂的性能要求,也能满足基础的服用性能。何伟等[1]通过酯化缩聚制备了改性聚酯原料并通过熔融纺丝制备了低强低伸涤纶长丝,断裂强度仅为1.0~2.2 cN/dtex,并且制得的织物透湿透气性、热稳定性能也得到提高。张小雨等[2]以阳离子改性涤纶丝为原纱进行织造,并进一步对得到的坯布交替进行酸处理和碱处理从而得到手撕布,经、纬纱撕破强力分别为3.5~5.8 N和3.5~6 N,满足手撕布的使用性能要求。还有一种方法是采用熔融复合纺丝制备低强度皮芯型复合纤维,并可以通过工艺设计制备具有异形截面的纤维以提高织物的可撕裂性、蓬松性和透气性。吴国忠[3]通过熔融共混纺丝的方法制备了以聚酰胺为皮层和以聚酯为芯层的低强低模复合纤维,并对织造后的织物采用水蒸气处理,制得的织物具有良好的易撕裂性及舒适性。王山水等[4]采用FDY工艺制备了三叶形弹性纤维,并通过机织织造制备了透气性良好的医用易撕布。
目前国内外对于低强度皮芯型复合纤维的研究相对较少,且纯聚酯类的低强度皮芯型复合长丝在国内外文献中尚未见报道。LVPET作为一种低黏度聚酯,分子间作用力较小,可满足低强度纤维的制备要求,并且LVPET保留了聚酯的部分特性[5],与其他聚酯类化合物的黏合性和相容性较好;而COPET作为一种水溶性聚酯,大分子链上存在的特殊结构使其易于水解[6],从而减少了有机溶剂的使用并且有利于回收利用,可提高产品的经济效益和社会效益。因此,本研究采用复合纺丝法制备了171 dtex低强度LVPET/COPET皮芯复合FDY丝,探讨了纺丝温度、牵伸倍数、纺丝速度等工艺参数对纤维可纺性和纤维质量的影响,并对复合长丝的取向度及力学性能进行了分析,可为低强度皮芯结构复合纤维的制备提供一定的参考与借鉴。
1 材料与方法
1.1 材 料
黏度(0.58±0.05) dl/g、熔点为(265±5) ℃的LVPET切片(上海金山石化有限公司),黏度(0.60±0.012) dl/g、熔点为(236±5) ℃的COPET切片(龙岩创冠化纤有限公司),油剂A(F-1048)与油剂B(TF-7615)(旭美化工科技有限公司)。
1.2 仪 器
SZG双锥回转真空干燥机(常州凯航干燥设备有限公司),JK81B-80X25-00螺杆挤压机(北京中丽制机工程技术有限公司),PF2T熔体过滤器(苏州东海滤机设备有限公司),BKV546一部位FDY纺牵联合机(北京中丽制机工程技术有限公司),YG086缕纱测长仪、YG021A-Ⅲ式电子单纱强力机(温州方圆仪器有限公司),SSY-C纤维双折射仪(上海东华凯利化纤高科技有限公司)。
1.3 试 验
1.3.1 LVPET/COPET皮芯复合长丝的制备
采用转鼓干燥机分别对LVPET切片与COPET切片进行干燥,含水率达到要求后分别送至各自的螺杆挤出机熔融挤压。通过不同的熔体管道各自输送到主副纺丝箱体内的计量泵中,然后在纺丝组件内复合成皮芯结构截面形状。最后从喷丝板喷出,经侧吹风冷却凝固成复合纤维,经上油、预拉伸、拉伸、热定型等工序,卷繞成筒制得低强度皮芯复合纤维。
合适的冷却工艺是使纤维获得优异性能的重要条件,其中侧吹风风速控制在0.3~0.5 m/s,侧风风温控制在(21±2) ℃,风湿控制在70%~80%时,纤维成形性良好;油剂的抗静电性能及上油率对纤维的可纺性和纺丝质量也有较大的影响,经多次试验,油剂B相对于油剂A的抗静电效果较好,成丝率及成丝质量良好。本试验采用油剂B且含油率为0.5%时,纤维的可纺性和拉伸性能良好。
1.3.2 性能测试
1) 取向度测试。采用SSY-C型双折射仪测量纤维的双折射率(Δn)以反映纤维的取向度。双折射仪目镜为5倍,物镜为40倍。双折射率计算公式如下:
Δn=Rd×1 000(1)
式中:R为光程差,nm;d为纤维直径,μm。
2) 拉伸性能测试。根据GB/T 3916—2013《纺织品卷装纱单根纱线断裂强力和断裂伸长率的测定(CRE法)》标准,采用YG021A-Ⅲ式电子单纱强力机测试纤维的拉伸性能,试样的夹持长度为500 mm,拉伸速度为500 mm/min。
2 结果与分析
2.1 原料干燥工艺
通常LVPET切片含水率为0.4%~0.5%,而COPET分子链中存在极性基团,容易吸水,若切片中含水量过多,会使聚酯高分子在纺丝过程中发生水解,造成相对分子质量下降从而影响纺丝质量,严重时甚至无法纺丝,为了进一步提高可纺性和纺丝质量,因此对两种切片都进行干燥处理[7]。干燥温度较低会降低干燥效果,干燥温度过高则易造成相对分子质量下降,使得切片增黏、氧化变黄从而影响可纺性及纺丝质量[8]。本试验采用回转真空干燥设备,经试验LVPET与COPET的干燥温度分别为(165±5) ℃、(145±5) ℃,干燥时间分别为7~9 h、16~18 h,含水率可分别控制在0.01%、0.03%左右,满足复合纺丝要求。
2.2 螺杆熔融温度
螺杆温度是决定高聚物充分熔融的主要条件,温度太高会导致高聚物降解,温度太低会导致高聚物熔融不充分,从而影响可纺性及產品质量。经反复试验,控制LVPET螺杆挤出机各区温度为285 ℃/285 ℃/285 ℃/285 ℃/285 ℃、COPET螺杆挤出机各区温度为284 ℃/284 ℃/284 ℃/284 ℃/285 ℃时,复合纤维可纺性及成丝质量良好。
2.3 纺丝温度
纺丝工艺中,纺丝温度与熔体的流动性能有直接关系,会进一步影响到熔体细流冷却固化效果及初生纤维的结构和拉伸性能。本试验采用复合纺丝工艺制备皮芯结构纤维,应通过控制主、副纺丝箱体温度来减小两组分在喷丝口处的黏度差异,使得皮芯结构结合面更加均匀、平滑,从而有利于后道的牵伸工艺[9]。经试验, LVPET的纺丝箱体温度控制在282 ℃、COPET的纺丝箱体温度控制在280 ℃时,复合纤维截面的均匀性、稳定性良好,在后道牵伸时不易发生断裂。
2.4 组分配比
在LVPET螺杆挤出温度为285 ℃、COPET螺杆挤出温度为284 ℃、LVPET纺丝箱体温度为282 ℃、COPET纺丝箱体温度为280 ℃时,将LVPET/COPET比例定为30︰70、40︰60、50︰50、60︰40、70︰30进行试验,并取不同组分配比下的无油丝制成的切片观察其截面形态,记录不同组分配比下的可纺性,其可纺性和截面形态如表1和图1所示。
由表1可知,复合比为30︰70时吸枪吸不住丝束,无法正常纺丝,可纺性极差;复合比为40︰60时吸枪可以吸住丝束,但纺丝过程中易发生断头,可纺性也较差;纺丝复合比为50︰50、60︰40、70︰30时,纤维可纺性良好。
从图1可以看出,复合纤维横截面呈明显的皮芯结构,其皮质与芯层的色泽差别显著,皮层颜色较深,芯层颜色较明亮。当复合比为30︰70时,纤维成形劣化,其皮层结构出现破裂,部分纤维的表面甚至完全没有被皮层覆盖。这是由于皮芯质量比太低,使得LVPET熔体在组件内部压力过低,以至于在喷丝口不能均匀地覆盖COPET熔体而引起的[10];在皮芯质量比为40︰60和50︰50的条件下,纤维的组织结构比较完整,分布均匀,成形完好;在皮芯质量比为60︰40和70︰30时,纤维皮芯结构完好,但由于皮层为低黏度聚酯,若皮层含量过高,会导致纤维强度过低从而使纺丝过程中易发生断头现象。
综合表1和图1的分析情况来看,选择LVPET与COPET的最优复合比为50︰50。
2.5 牵伸倍数
纤维的取向度、结晶度与力学性能密切相关,而纤维的取向主要发生在热牵伸工序。适当增加牵伸倍数有利于提高纤维的拉伸强度和弯曲刚度;若牵伸倍数过小,则会出现未拉伸丝,给纺织加工带来困难;若牵伸倍数过大,则会产生毛丝、断头,影响纺丝质量。在其他条件不变的情况下,本试验设定牵伸倍数分别为2.4、2.7、3.0、3.6进行纺丝,其可纺性及纤维的力学性能如表2所示,取向态结构参数如表3所示。
从表2可以看出,随着牵伸倍数的增加,纤维的断裂强度逐渐增大,断裂伸长率逐渐下降。这是由于牵伸倍数的增大提高了非晶区的取向度[11],在牵伸过程中非晶区卷曲的大分子通过链段运动,沿着牵伸方向伸展,纤维能够承受外力的分子链数量增多,从而使纤维强度增大,而伸长率降低。当牵伸倍数为2.7时,纤维的断裂强度与试验要求最接近。从表3可以看出,随着牵伸倍数的增加,纤维的双折射率逐渐增大。这是由于拉伸过程中非晶区内部大分子链沿受力方向有序伸展排列,取向度提高,反映为双折射率增加[12]。
综合纤维的拉伸性能及取向度,牵伸倍数的最佳工艺选择为2.7,此时纤维的断裂强度最接近2.0 cN/dtex。
2.6 牵伸温度
牵伸温度一般高于聚合物的玻璃化温度时,才能使纤维得到均匀拉伸,从而避免毛丝。LVPET和COPET的玻璃化转变温度在67 ℃左右,对于皮芯型LVPET/COPET复合长丝而言,拉伸过程需要加热,而选择恰当的拉伸温度对于该复合长丝的制备也尤其重要。第二热辊起定型作用,使拉伸时形成的分子链结构得到进一步固定,有利于纤维结晶和取向的形成,可以在一定程度上提高纤维的可纺性。但是,温度不能过高,否则会导致纤维大分子松弛而解取向。试验表明,皮芯型LVPET/COPET复合长丝在生产过程中,第二热辊的温度在90~115 ℃为宜。
2.7 纺丝速度
纺丝速度的适当增加,会使得纺丝线上的速度梯度增加,卷绕张力随之增加,使得纤维大分子链沿拉伸方向有序规整排列,取向度和结晶度增加,有利于增强纤维的力学性能。但纺丝速度过高时,初生纤维会越来越细,易受空气气流影响,致使丝条与空气的摩擦阻力增大从而产生毛丝[13],此外纤维会因内部应力过大而发生断裂。在其他条件不变的情况下,设定纺丝速度分别为2 800、3 000、3 200、3 400 m/min进行纺丝,其可纺性及纤维的拉伸性能如表4所示,取向态结构参数如表5所示。
从表4可以看出,随着卷绕速度的增加,纤维的断裂强度逐渐增大,断裂伸长率逐漸下降。这是由于卷绕速度的增大,使得分子链排列更加有序、规整,纤维承受外力作用的能力加强,表现为断裂强度提高,而此时由于分子链间的束缚力增强,纤维的断裂伸长率有所下降。当卷绕速度超过3 200 m/min时,纤维的断裂强度反而下降,断裂伸长率增加。这是由于取向度的提高引起纤维内部结晶的发生,致使分子间作用力减小,断裂强度下降,分子间作用力减小也带来了分子链间的滑移[14],致使断裂伸长率增加。
从表5可以看出,随着卷绕速度的增加,双折射率逐渐增大,但当卷绕速度超过3 200 m/min时,双折射率反而下降。这是由于卷绕速度的增加使得纤维内部大分子链排列更加规整、有序,致使取向度增加,从而使双折射率增加。双折射率主要反映的是大分子链段的整体取向程度,代表的是小尺寸范围内的有序程度,相比于大分子链而言,取向与解取向都更容易,所以当卷绕速度过高时,大分子链段解取向程度大于取向程度,取向度下降,从而导致双折射率下降[15]。
综合纤维的拉伸性能与取向度分析,最佳的纺丝速度为3 000 m/min,这时的断裂强度最接近2.0 cN/dtex。
3 结 论
本研究将LVPET与COPET进行双组分复合纺丝,制备了171 dtex低强度皮芯结构复合长丝,并探究了纺丝工艺对纤维可纺性和质量的影响。
1) 根据纤维的可纺性,经反复试验,选择LVPET螺杆挤出机各区温度为285 ℃/285 ℃/285 ℃/285 ℃/285 ℃、COPET螺杆挤出机各区温度为284 ℃/284 ℃/284 ℃/284 ℃/285 ℃,LVPET的纺丝箱体温度为282 ℃,COPET的纺丝箱体温度为280 ℃,第二热辊的温度为90~115 ℃。
2) 控制纺丝温度不变,改变LVPET与COPET的组分配比进行对比试验,通过观察复合纤维横截面形态和可纺性,确定最佳复合比为50︰50。通过对纤维可纺性的观察及拉伸性能和取向度的分析,最终确定牵伸倍数为2.7,纺丝速度为3 000 m/min。
3) 采用双组分熔融复合纺丝技术并通过最佳工艺的探讨,制备了低强度皮芯结构复合长丝,其断裂强度满足2.0 cN/dtex的要求,可用作于制备可手撕纺织品。
参考文献:
[1]何伟, 向峰, 左平安, 等. 一种低强低伸涤纶长丝的制备方法: CN102618961A[P/OL]. https://d.wanfangdata.com.cn/patent/ChJQYXRlbnROZXdTMjAyMjAzMjMSEENOMjAxMjEwMDk5OD A5LjUaCHM4dnN0Z3By.
HE Wei, XIANG Feng, ZUO Pingan, et al. A low strength and low elongation polyester filament preparation methods: CN102618961A[P/OL]. https://d.wanfangdata.com.cn/patent/ChJQYXRlbnROZXdTMjAyMjAzMjMSEENOMjAxMjEwMDk5OD A5LjUaCHM4dnN0Z3By.
[2]张小雨, 付宾余. 一种手撕布及其制造方法: CN104452036A[P/OL]. https://d.wanfangdata.com.cn/patent/ChJQYXRlbnROZXd TMjAyMjAzMjMSEENOMjAxNDEwNjg1MzQyLjEaCGY2bzFiaWRt.
ZHANG Xiaoyu, FU Binyu. A hand tearing cloth and its manufacturing method: CN104452036A[P/OL]. https://d.wanfangdata.com.cn/patent/ChJQYXRlbnROZXdTMjAyMjAzMjM SEENOMjAxNDEwNjg1MzQyLjEaCGY2bzFiaWRt.
[3]吴国忠. 皮蕊型复合纤维及其制造方法以及织物: CN103014911A[P/OL]. https://d.wanfangdata.com.cn/patent/ChJQYXRlbnROZXdTMjAyMjAzMjMSEENOMjAxMjEwMzU2ND I5LjUaCHk2NGdpamIy.
WU Guozhong. Pistil type composite fiber and its manufacturing method and fabric: CN103014911A[P/OL]. https://d.wanfangdata.com.cn/patent/ChJQYXRlbnROZXdTMjAyMjAzMj MSEENOMjAxMjEwMzU2NDI5LjUaCHk2NGdpamIy.
[4]王山水, 范红卫, 汤方明, 等. 一种医用易撕布的制备方法: CN110983548B[P/OL]. https://d.wanfangdata.com.cn/patent/ChJQYXRlbnROZXdTMjAyMjAzMjMSE0NOMjAxOTExMzg2Mjc 0Ljhfc3EaCGYxcnN2bnlv.
WANG Shanshui, FAN Hongwei, TANG Fangming, et al. A preparation method of medical tear-off cloth: CN110983548B[P/OL]. https://d.wanfangdata.com.cn/patent/ChJQYXRlbnROZX dTMjAyMjAzMjMSE0NOMjAxOTExMzg2Mjc0Ljhfc3EaCGYxcnN2 bnlv.
[5]张德权. 低熔点皮芯型涤纶短纤维生产工艺研究[J]. 合成纤维, 2009, 38(5): 33-36.
ZHANG Dequan. Study on processing of low melting point polyester composite staple fiber[J]. Synthetic Fiber in China, 2009, 38(5): 33-36.
[6]杨文娟, 郭秉臣. 海岛纤维碱减量法溶解海组分[J]. 产业用纺织品, 2005(4): 26-29.
YANG Wenjuan, GUO Bingchen. Island-in-the-sea fiber dissolve sea component with alkalimetry[J]. Industrial Textiles, 2005(4): 26-29.
[7]葛晓陵, 蒋士忠. 功能性超细添加剂在化纤工业中的应用[J]. 纺织导报, 2001(3): 64-70.
GE Xiaoling, JIANG Shizhong. Development of superfine materials in chemical fiber industry[J]. China Textile Leader, 2001(3): 64-70.
[8]李顺希, 许志强, 詹莹韬, 等. 高密度聚乙烯/聚酰胺6复合纤维的制备及性能[J]. 合成纤维工业, 2020, 43(1): 42-45.
LI Shunxi, XU Zhiqiang, ZHAN Yingtao, et al. Preparation and properties of high-density polyethylene/polyamide 6 composite fiber[J]. China Synthetic Fiber Industry, 2020, 43(1): 42-45.
[9]金正日, 王海燕. PET/COPET海岛纤维POY生产工艺研究[J]. 合成纤维, 2004(3): 26-27.
JIN Zhengri, WANG Haiyan. Investegation on the process of PET/COPET sea-island POY[J]. Synthetic Fiber in China, 2004(3): 26-27.
[10]劉传生. LPET和PET的流变性能及其皮芯复合纺丝研究[J]. 合成纤维工业, 2021, 44(4): 38-42.
LIU Chuansheng. Study on rheological property and sheath-core composite spinning process of LPET and PET[J]. China Synthetic Fiber Industry, 2021, 44(4): 38-42.
[11]夏维, 陈立军, 赵杰, 等. 皮芯型复合储能调温聚酰胺6纤维的制备与表征[J]. 纺织学报, 2018, 39(4): 1-8.
XIA Wei, CHEN Lijun, ZHAO Jie, et al. Preparation and characterization of sheath-core energy storage and thermo-regulated composite fibers of polymaide 6[J]. Journal of Textile Research, 2018, 39(4): 1-8.
[12]陈咏, 乌婧, 王朝生, 等. 生物可降解聚己二酸—对苯二甲酸丁二醇酯纤维的制备及其环境降解性能[J]. 纺织学报, 2022, 43(2): 37-43.
CHEN Yong, WU Jing, WANG Chaosheng, et al. Preparation and environmental degradation behavior of biodegradable poly (butylene adipate-coterephthalate) fiber[J]. Journal of Textile Research, 2022, 43(2): 37-43.
[13]张小英, 潘志娟, 钱丹娜, 等. 静电纺锦纶6纳米级纤维的形态结构[J]. 纺织学报, 2006(7): 13-15.
ZHANG Xiaoying, PAN Zhijuan, QIAN Danna, et al. Configuration of electrospun polycaprolactam nano-scale fibers[J]. Journal of Textile Research, 2006(7): 13-15.
[14]郝超伟, 马清芳, 王峥, 等. 超细旦多孔尼龙6弹力丝的生产工艺[J]. 合成纤维工业, 2011, 34(6): 41-43.
HAO Chaowei, MA Qingfang, WANG Zheng, et al. Production process of porous super-fine nylon 6 textured yarn[J]. China Synthetic Fiber Industry, 2011, 34(6): 41-43.
[15]陈克权, 段菊兰, 周燕, 等. 卷绕速度对PTT初生纤维结构与性能的影响[J]. 合成纤维工业, 2004(5): 14-17.
CHEN Kequan, DUAN Julan, ZHOU Yan, et al. Effect of take-up velocity on structure and properties of as-spun PTT fiber[J]. China Synthetic Fiber Industry, 2004(5): 14-17.
Study on the preparation and properties of low-strength LVPET/COPET skin-corecomposite filaments
REN Tianxiang1a, SUN Xiaoxiao1a, TENG Xiaobo2, SHI Peiyu1a, QI Dongming3, MA Jinxing4, ZHAO Defang1, ZHAN Haihua1
(1a.College of Textile and Garment; 1b.Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province; 1c.Zhejiang Sub-centerof National Carbon Fiber Engineering Technology Research Center; 1d.Shaoxing Sub-center of National Engineering Research Center forFiber-based Composites, Shaoxing 312000, China; 2.CTA High-Tech Fiber Co., Ltd., Shaoxing 312000, China;3.Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China;4.Shaoxing Shuixiang Textile Technology Co., Ltd., Shaoxing 312000, China)
Abstract:
With the rapid development of material science and technology and the continuous improvement of market demand, more and more new textile materials have emerged at home and abroad. Among them, the tearable textile material, a new type of textile, can be used for the preparation of products such as tearable medical gauze, bandages, disposable tearable bags, label cloth, and electronic tapes. Users can tear it from any direction. The use process is convenient and fast, and it has a wide space for development and application. Tearable textiles are mainly woven from low strength fibers, and the strength is required to be about 2.0 cN/dtex. However, the strength of conventional chemical fibers is generally over 2.5 cN/dtex, and that of polyester fibers is more than 3.0 cN/dtex. Therefore, special preparation processes are required to meet the requirements of low strength properties. At present, there are three main preparation methods of tearable textiles on the market. One is to add chemical additives and adhesives to chemical fiber raw materials and make non-woven materials through nonwoven technology. However, such materials exhibit poor durability, heat resistance, light resistance, moisture absorption and air permeability, limiting their application in various fields. Another is the physical and chemical modification of chemical fiber masterbatches or fibers. The fabric obtained can not only meet the tear performance requirements, but also meet the basic wearing performance. The last method is to use melt composite spinning to prepare low strength skin core composite fibers, and process design can be used to prepare fibers with profiled sections to improve the tear resistance, bulkiness and air permeability of the fabric. Nevertheless, there are relatively few studies on low strength sheath core composite fibers at home and abroad, and the low strength sheath core composite filament of pure polyester has not been reported in the literature at home and abroad. The intermolecular force of low viscosity polyester (LVPET) is small, which can meet the preparation requirements of low strength fibers. LVPET retains some properties of polyester, and has good adhesion and compatibility with other polyester compounds. The special structure on the macromolecular chain of water-soluble polyester (COPET) makes it easy to hydrolyze, which reduces the use of organic solvents and is conducive to recycling, and can improve the economic and social benefits of the product. In view of this, we explored the preparation of a low strength sheath core composite fiber with LVPET as the skin layer and COPET as the core layer through melt composite spinning process. Specifically, LVPET chips and COPET chips meeting the water content requirements after drying were sent to their respective screw extruders for melting and extrusion, and were respectively transported to the metering pumps in the main and auxiliary spinning boxes through different melt pipes. Then, they were compounded into skin core structure section shapes in the spinning components, and then they were sprayed from the spinneret, cooled and solidified by side blowing to obtain composite fibers. Finally, the low-strength LVPET/COPET sheath-core composite fiber was obtained by oiling, pre-stretching, stretching, heat setting and winding. During the whole experiment, the appropriate screw melting temperature, spinning temperature and drafting temperature were determined according to the spinnability and spinning quality of the fiber; the LVPET/COPET ratios were set at 30︰70, 40︰60, 50︰50, 60︰40 and 70︰30, respectively for experiments. The skin core structure of the composite fiber was observed through the optical microscope to determine its raw material composition distribution ratio; the spinning speeds of 2 800 m/min, 3 000 m/min, 3 200 m/min and 3 400 m/min were set respectively for experiments. The spinning speeds were determined according to the spinnability, mechanical properties (breaking strength and elongation at break) and orientation degree of the fibers; the drafting ratios were set as 2.4 times, 2.7 times, 3.0 times and 3.6 times, respectively for experiments, and the drafting ratios were deterimined according to the spinnability, mechanical properties (breaking strength and elongation at break) and orientation degree of the fiber. The results show that when LVPET and COPET are used for skin core composite spinning, temperatures of various zones of the screw extruder for LVPET and COPET screw extruder are 285 ℃/285 ℃/285 ℃/285 ℃/285 ℃ and 284 ℃/284 ℃/284 ℃/284 ℃/285 ℃, respectively, the spinning box temperatures of LVPET and COPET are 282 ℃ and 280 ℃, respectively, the temperatures of the second hot roll range from 90 ℃ to 115 ℃, the mass ratio of LVPET to COPET is 50︰50, and the drafting multiple is 2.7, the spinning speed is 3 000 m/min, the prepared 171 dtex skin-core composite filament has good spinnability and mechanical properties, which meets the fiber strength requirements of tearable textiles. Through the selection and modification of raw materials as well as the optimization of process, the requirements of tearable textiles for low strength properties of fibers can be met, and the antibacterial property, durability and wearability of fibers can be further improved by means of modification, so as to expand their application scope in various fields and have a good development space.
Key words:
low strength fiber; low viscosity polyester; water soluble polyester; skin-core composite filament; melt composite spinning process; tearable textiles
收稿日期:
2022-08-03;
修回日期:
2023-02-22
基金項目:
绍兴市“揭榜挂帅”制科技项目(2021B41003)
作者简介:
任天翔(1998),男,硕士研究生,研究方向为高分子材料及高技术纤维开发。通信作者:赵德方,副教授,博士,zhaodefang0518@usx.edu.cn。