柳雪 高明
解析几何问题通常较为复杂,且解题过程中的计算量大,出错率高.利用参数方程解答解析几何问题,不仅可以使方程中的变量减少,还能够减小计算量,达到化繁为简的效果.
例3
证明:
解答本题,需根据椭圆的参数方程,将椭圆上的点用参数形式表示出来,列出四条直线的方程,通过联立方程求得到点 M、N 的横坐标,进而根据直线的斜率公式建立关系式,从而求得 MN 的方程.利用椭圆的参数方程,不仅可使题目中的变量统一,还可以使最终的直线形式简洁、美观,便于计算.
可见,在解答解析几何问题时,巧妙利用直线或曲線的参数方程,能使问题中的几何关系以更加简洁的形式呈现,还能简化运算过程,能大大提高解题的效率.但在运用直线或曲线的参数方程解题时,要多关注参数的取值范围和几何意义,这是获得正确答案的有力依据,能为我们解题带来很大的便利.
基金项目:基于核心素养下的南充市高中课堂教学研究——以数学学科为例,西华师范大学纵向科研项目,项目编号468020.
(作者单位:西华师范大学数学与信息学院)