作者简介:徐本禹(1983~),男,汉族,贵州赫章人,赫章县第三中学,研究方向:高中数学教育教学。
摘 要:新高考取消了文理分科,学生可以根据自身兴趣爱好自由搭配学科,数学始终是核心学科之一,对高考起到至关重要的作用。以往高中数学课程设计中存在着诸多问题,包括教育理念较为滞后、核心素养渗透不足、教学方式不够多样。新高考背景下,高中数学课程设计中,教师要转变传统教育理念,落实以生为本原则,渗透数学核心素养,培养学生思维能力,提高学生解题能力。教师要探究课程设计策略,包括确定课程教学目标,营造积极学习氛围,优化课程知识结构,精选课程教学内容,创设情境启发思考,提出合作探究任务,引入高考典型题目,重视实施过程评价。
关键词:新高考;高中数学;课程设计;三角函数;以生为本
中图分类号:G633.6 文献标识码:A 文章编号:1673-8918(2023)08-0048-05
近年来,越来越多的省市加入高考改革的行列,不再进行文理分科,高中生可以根据自己的兴趣爱好、理想志愿与发展前景等,选择合适的搭配学科。在新高考背景下,高中数学也迎来了一些改革,国家推行了新教材,印发了新的课程标准,越来越多的省市开始使用全国卷。基于此,教师需要转变传统的教学观念,创新课程教学方式,优化课程设计。以往的高中数学课程设计存在着诸多问题,影响了总体教学效果,不利于达成课程教学目标。新高考背景下,教师要认真研读新版的《普通高中数学课程标准》,基于其中课程理念与核心素养内涵,结合具体课程内容和基本学情,研究科学合理的课程设计策略。
一、 高中数学课程设计的问题
(一)教育理念较为滞后
数学教育不仅要教授学生必需的数学知识、解题技能、思想方法等,还需要落实立德树人根本任务,发挥素质教育的功能,提升学生的数学素养,培养学生正确的价值观念。部分教师尚未认识到高中数学的多元价值,在课程设计中依然遵循传统教育理念,学生主体地位不够突出,重视教授学生的知识与技能,忽视指导学生数学思想方法,无法发挥素质教育的功能。在这样的背景下,高中数学课程教学无法落实多元教学目标,影响课程整体教学效果。
(二)核心素养渗透不足
数学学科核心素养内涵丰富,包括数学抽象、逻辑推理、数学建模、直观想象、数学运算和数据分析。在高中数学课程设计中,教师需要根据课程主题内容,渗透相关核心素养,这样不仅能够让学生掌握数学概念、公式与定理,还能培养学生数学思维,使之掌握数学思想方法。但是,受到教育理念的影响,加上教學资源不足,教学时间有限等,核心素养渗透不足,教师无法全面地培养学生数学学科核心素养,无法有效达成既定的课程教学目标。
(三)教学方式不够多样
长期以来的高中数学教学中,教师大多是通过先讲后练的方式实施教学,即先运用图文资料和通过口述的方式,讲授课程基础知识,再让学生进行相关训练。在这个过程中,教师居于绝对中心位置,向学生灌输各类知识内容,学生处于被动接受的位置,无法深入进行思考,无法有效进行交流探讨,无法经历知识生成的过程,数学思维的发展被遏制,对后续学习产生不利影响。由于教师运用的教学方式不够多样,学生还会遇到其他方面的问题,整体课程教学效果不佳。
二、 新高考背景下高中数学课程设计的要求
(一)转变传统教育理念
在新高考背景下,根据新高考带来的变化,高中数学课程设计也要做出相应的改变。教师先要转变传统的教育理念,明确数学教学不仅要教授学生数学知识、技能、思想与方法,还要落实立德树人根本任务,进行素质教育,提升学生数学素养。新课标的基本理念提出:学生发展为本,立德树人,提升素养。因此,教师要特别重视课程设计,在课程设计中融入德育内容,这样一来,可以更好地发挥数学课程的育人价值,在数学课程中培养学生正确的思想观念。
(二)落实以生为本原则
高中数学课程以学生的发展为本,面向全体学生,让所有学生都能获得良好的数学教育,让不同的学生都能在数学上得到不同程度的发展。落实以生为本的原则要体现在方方面面上:教师要根据基本学情与认知情况,精选课程教学内容,优化课程内容结构;改变过去单独授课的方式,注重启发学生独立思考,引导学生自主学习与合作探讨;根据学生学习过程的表现情况,做好过程评价。教师基于以生为本原则进行课程设计,能够引领学生更好地学习与探究。
(三)渗透数学核心素养
数学学科核心素养,集中体现了数学课程目标,综合体现了数学相关的思维品质、关键能力与价值观念等,学生需要在学习和应用数学知识与能力的过程中,逐步发展数学核心素养。新课标提出了六项核心素养,预示着高考改革的方向,新高考数学卷中也渗透着各类核心素养。因此,教师应当在数学课程设计中全面渗透数学核心素养,这样才能培养学生的数学眼光,发展学生的数学思维,训练学生的数学语言,提高学生的数学解题能力。
(四)培养学生思维能力
新高考背景下,通过研读新高考试题,可以明确题目更为灵活多变,重视对学生数学思维能力的考查,学生需要综合运用所学知识,才能更好地解答高考试题。因此,在高中数学课程设计中,教师需要分析学生学习基础,引入丰富多样的课程资源,创设多元化教学方式,注重启发和引导学生,引领学生参与小组合作探究,引发学生独立思考与共同探究,教授学生数学思想方法,促进学生进行举一反三。教师通过落实以上课程设计,可以有效培养学生数学思维能力。
(五)提高学生解题能力
在新高考背景下,教师要重视提高学生解题能力。在过去的高中数学课程设计中,教师大多是引入教材和练习册的题目,题目缺乏新意,或比较简单,或过于复杂,与高考要求不相适应。在新时期的教学设计中,教师要引入丰富多样的数学题目,重点引入一些高考典型题目,先让学生运用所学自主解答问题,然后根据学生的解答情况进行讲解,分析其中涉及的数学知识和技能,探析其中蕴含的数学思想方法,再让学生完成类似题目,在巩固中提高学生解题能力。
三、 新高考背景下高中数学课程设计的策略
(一)明确学生发展为本,确定课程教学目标
新课标课程性质提出:数学教育承载着落实立德树人根本任务、发展素质教育的功能。基本理念提出:高中数学课程要以学生发展为本,落实立德树人根本任务,培育学生的创新意识、科学精神,提高学生数学学科核心素养。因此,教师要根据基本理念,探究数学课程主题内容,融合学生数学基础与认知情况,确定课程教学目标,不仅包括知识和技能、过程与方法的目标,还要包括德育相关的目标,以此为基础设计教案与学案、教学课件与微课视频等。
例如,在《三角函数》章节中,包括“任意角和弧度制”“三角函数的概念”“诱导公式”等课程,很多课程都渗透德育资源。新高考背景下,教师要明确学生发展为本,在备课过程中探析其中的育人资源,确定完善的课程教学目标。如在“三角函数的概念”课程中,教师在实施教学设计中,要以生活情境为背景,突出任意角三角函数概念的本质,基于学生已有的反映周期现象变化的经验,让学生经历概念建构过程,确定课程教学目标:基于单位圆建立一般三角函数概念,理解任意角三角函数定义;根据定义计算任意角三角函数值;基于三角函数知识构建数学模型,以此解决现实问题。教材中引入了“三角学与天文学”的内容,主要让学生明确三角学的起源和发展与天文学密不可分,是天文观察结果推算的一种方法。因此,教师融入德育目标,让学生明确三角函数对天文学等科学发展的重要性,培养学生数学学习兴趣,激发学生创新意识与探究精神。
(二)营造积极学习氛围,激发学生学习兴趣
在教育信息化背景下,教师重视运用现代信息技术与数字资源实施教学,可以丰富课程教学资源,创新课堂教学方式,吸引学生积极思考与主动学习,营造积极活跃的学习氛围,激发学生学习兴趣。在高中数学课程中,很多课程的概念、公式、图象和应用等,无法通过传统的授课方式展现,或者展现效果不佳。教师可以根据教学需要,引入丰富多样的图文、动画、微视频等资源,动态展现知识建构过程,能够增加课程教学的趣味性,激发学生课程学习的兴趣。
例如,在“三角函数的图象与性质”课程中,教师讲授正弦函数、余弦函数的图象过程中,先研究函数y=sinx,x∈R的图象,先画出函数y=sinx,x∈[0,2π]的图象。教师根据教材内容,提前做好准备,准备画图软件或引入相应的动画,通过利用信息技术工具,可让x0在区角[0,2π]上取到足够多的值,从而画出足够多的点T(x0,sinx0),这样再把这些点用光滑曲线相连,以此得到精确的函数y=sinx,x∈[0,2π]的图象。在以上操作的过程中,教师可以让学生试着进行体验操作,用交互式白板取值、画点、连线等。经历这个操作过程,还可以提出一些思考问题:根据这个图象,想象y=sinx,x∈R这个函数图象是怎样的?教师通过用这样的方式,可以更好地将学生调动起来,引发学生积极地思考、相互交流、动手操作,从而营造积极活跃的课堂氛围,能够有效激发学生学习本课的兴趣。
(三)优化课程知识结构,突出数学教学主线
基于新版的《普通数学课程标准》,明确基本理念的内容,在新高考背景下,教师还要优化课程知识结构,重视课程基础知识教学,让更多的学生都能掌握基本的数学知识和技能。同时,教师还要提供一些个性化的学习资源,让学生可以进行多样化选择,差异化培养学生。在教学设计中,教师需要突出数学教学的主线,基于数学内在逻辑与思想方法进行教学设计,实施相应的课程教学。
例如,关于“三角函数的图象与性质”的课程,基础知识包括正弦、余弦、正切函数的图象与性质,五点法作正弦函数与余弦函数的简图等。通过研读课程标准、教学大纲、近年来高考大纲,教师要优化课程知识结构,在课程设计中多融入这些内容:三角函数的单调区间、值域(最值)、周期性、奇偶性、对称性等,根据学生的具体情况,引入基础知识点、典型例题、高考试题等,将这些内容融入教案、学案、课件中,更好地做好课程设计。在教学中,教师要求学困生熟悉课程基础内容即可,要求中等生熟练运用三角函数的图象和性质解决基础题,要求学优生解答一些综合题或高考题。关于本课教学主线,教师要根据教材中的三小节内容,从正弦函数和余弦函数的图象开始,再讲解它们的性质,最后讲解正切函数的性质与图象,引导学生巩固练习,从而完善本课程的教学。
(四)精选课程教学内容,渗透数学核心素养
基于新高考的高中数学课程设计,教师要根据课程的重点与难点,并结合高考数学的考点等,精选课程教学内容,均衡数学知识技能和学科核心素养之间的关系,加强数学与其他学科、现实生活的联系,引导学生运用数学知识与技能解决实际问题,不仅能够提高学生解题能力,还能渗透数学文化。
例如,在“诱导公式”的课程中,本节主要探究的是三角函数二到六的诱导公式,这个推导过程涉及對称变换,体现出对称变换的思想,融合特殊到一般的数学思想。教师通过研读本课的内容,结合课程标准与近年来的高考试题,可以明确课程重点:基于单位圆,推导正弦和余弦的二到六组的诱导公式,要求学生能够用这些诱导公式将任意角三角函数转化成锐角三角函数;难点是解答关于三角函数求值、化简、恒等式证明等问题。教师在进行课程设计中,确定教学过程突出学生主体,要求学生参与小组探究,运用探究式教学方式,要让学生经历诱导公式的推导过程,最后总结记忆口诀:奇变偶不变,符号看象限。关于课程设计中渗透数学核心素养,主要有:学生理解二到六诱导公式的过程中,渗透了数学抽象;基于单位圆中三角函数定义,推导这六组诱导公式,就是逻辑推理;在运用诱导公式化简、求值、恒等式证明的过程,就是数学运算。
(五)创设情境启发思考,教授学生思想方法
基于新课标的课程基本理念,在发现学生核心素养的导向下,教师还要创设与课程相关的教学情境,以此启发学生积极思考,引导学生掌握数学课程的概念、公式与定理等,熟悉其中渗透的思想方法。教师要结合一些具体的题目,教授学生数学思想方法,其中包括函数思想、方程思想、数形结合思想、化归思想和分类讨论思想等。通过先让学生自主解答,再进行讲解,促进学生更好地掌握。
例如,在“三角函数的应用”课程中,教师要根据现实中大量的具有周而复始、循环往复特点的周期运动变化现象,如弹簧振子振动、钟摆摆动、水中浮标的上下浮动、信号灯频闪、琴弦振动等,创设生动有趣的情境,基于这些情境,设置一些问题,让学生探析相关的函数解析式。教师基于这个逻辑进行课程设计,能够让学生认识到数学与生活的深入联系,有效启发学生独立思考与积极地探讨,更好地提高课程教学的效果。教师还要引入一些具体的题目,先让学生自主解答再进行讲解,在过程中教授学生数学思想方法。如关于分类讨论思想的题目:如果△ABC的三个内角满足sinA=sinB+sinCcosB+cosC ①,这个三角形是否可能是直角三角形?若是,哪个角是直角?教师先让学生自主解答,后借助图文讲解:假设△ABC是直角三角形,分为三种情况讨论:(1)若B=90°,那么A=90°-C,代入①式,根据计算结果判定B≠90°;(2)同理判定C≠90°;(3)若A=90°,①式右边与左边都等于1,因此可以判定这是直角三角形,A=90°。教师还可以引入相关题目让学生巩固练习,运用其他类型题目教授其他数学思想方法。
(六)提出合作探究任务,经历知识生成过程
在新课标基本理念中,提倡独立思考、自主学习、合作交流等多种学习方式,逐步培养学生创新意识,发展学生的实践能力。在新高考背景下做好课程设计,教师要根据课程主题与教学目标,提出一些合作探究的任务,要让学生通过小组合作的方式参与其中,让学生经历知识生成的过程,最后让小组代表展现合作探究的成果,再根据情况进行针对性的讲解。
例如,在“三角恒等变换”的课程中,通过之前的学习,学生已经掌握诱导公式,两角和与差的正弦、余弦、正切公式与二倍角公式,能够灵活运用公式参与求值、化简与证明等,具备一定的逻辑推理与数学运算能力。本课教学的重点是:基于二倍角公式推导半角公式,感受三角恒等变换的思想方法与参与运用;教学难点是:运用三角恒等变换技巧参与三角函数式求值、化简与证明等。教师可以先借助电子课件进行情境导入,之后布置探究半角公式、辅助角公式的任务,还可以让学生参与化简求值问题、三角恒等式的证明、三角恒等变换与三角函数图象性质的综合等的探究过程。教师要在学生参与小组合作探究的过程中注意观察,适时进行点拨,帮助学生更好地经历这些知识生成的过程。当各组学生代表展示完探究成果后,教师还要借助图文与动画等资料,梳理知识生成的过程。
(七)引入高考典型题目,提高学生解题能力
在新高考背景下,做好高中数学的课程设计,教师还要引入一些高考典型题目,让学生运用所学的高中数学知识、解题方法、数学思想等,分析与解答出这些试题,这样可以更好地巩固所学,提高学生的解题能力。教师要认真分析近年来的高考数学全国卷与各地试卷,精选一些典型题目,融入教学设计中,先让学生进行限时作答,之后进行针对性的分析讲解,以此提高综合教学效果。
例如,通过研读2022年的全国高考试题,可以明确涉及的三角函数内容多样,总体分为三角函数的图象与性质、三角函数变换、解三角形、综合。教师可以根据不同方面的知识,在教案中引入不同类型的试题,在综合训练中要求学生进行作答。如在2022年新高考全国一卷中,第6题是:记函数f(x)=sinωx+π4+b(ω>0),若2π3<T<π,且y=f(x)图象关于点3π2,2中心对称,那么fπ2=( )。基于这道题,教师先让学生自主解答,之后进行解析:根据函数的最小正周期T满足2π3<T<π,解出2<ω<3;再根据函数图象关于点3π2,2中心对称,解出ω=52,最后得出fπ2=1。教师让学生自主完善其中的步骤。
(八)重视实施过程评价,帮助学生认识自我
根据新课标的基本理念提出的“重视过程评价”,教师既要重视学生的学习过程,也要重点关注学生的学习结果,综合进行相应的评价。教师还要借助现代信息技术软件,关注学生掌握知识与技能的情况、数学核心素养的发展状况,以此建立评价体系,做到目标多元、方式多样、丰富主体、重视过程。在评价过程中,教师要点出优势与不足,让学生正确认识自我,鼓励学生继续努力。
例如,在《三角函数》的章节结束之后,教师需要根据各节课程中记录学生参与学习与探究的情况,明确学生的学习所得与态度,通过检测明确学生的学习结果,将这些数据共同输入到评价软件中,进行数据分析。教师还要根据章节的教学目标,运用多样的评价方式,先让学生与小组进行自评与互评,之后再实施总结评价,总结相关知识、技能、方法与思想,点出学生学习过程中的问题,对表现出色的学生与小组进行表扬,鼓励其他小组继续努力、积极进取。
四、 结语
综上所述,以往的高中数学课程设计中存在着诸多问题,影响课程教学效果。在新高考背景下,教师需要结合高中数学课程设计的要求,探究科学的课程设计的策略。教师根据课程主题内容、教学目标与基本学情等,从多个方面做好课程设计,实施相应的教学,能够引领学生积極参与课程学习与探究中,使其掌握知识与技能、思想方法等,培养学生核心素养,有效提高数学课程的教学效果,从而更好地完善高中数学课程设计。
参考文献:
[1]郝文华.新高考背景下高中数学阅读教学探究[J].教学与管理,2022(31):47-49.
[2]陈杰.新高考背景下高中数学教学研究[J].数理天地:高中版,2022(23):73-75.
[3]许正库.新高考背景下高中数学教学策略探讨[J].文渊(高中版),2019(8):695.
[4]刘正宇.新高考背景下高中数学复习策略探析[J].课堂内外(高中教研),2021(5):75.
[5]王梦.新高考背景下高中数学教学方法的创新研究[J].新教育时代电子杂志(学生版),2021(17):236.
[6]丁晓军.基于新高考背景下高中数学教学模式创新的研究[J].新课程(下),2019(8):21-23.
[7]陈磊.基于新高考背景下高中数学教学模式探究[J].数理化解题研究,2022(27):59-61.
[8]张丽惠.新高考背景下高中数学解题教学的策略[J].数学学习与研究,2022(10):101-103.