由一道高考题引发的教学思考
——浅谈高中数学教学中直观想象素养培养

2023-03-07 08:44天津市第四中学杨赫梁
天津教育 2023年1期
关键词:直观图作图考试题

■天津市第四中学 杨赫梁

《普通高中数学课程标准(2022年版)》已经颁布并实施。如何适应新形势下的课程改革,将高中数学学科素养渗透到教学实践中,是每位数学教师必须面对和思考的问题。经过近几年的实践研究,特别是对近几年高考试题的研读与分析,笔者结合一道2022年天津高考数学试题,浅谈在高中数学教学中,如何培养学生的直观想象素养。

一、高考试题展示

如图,“十字歇山”是由两个直三棱柱重叠后的景象,重叠后的底面为正方形,直三棱柱的底面是顶角为120°,腰为3的等腰三角形,则该几何体的体积为()

二、命题思路分析

2022年高考是天津使用新教材以来的首年高考,从此题的命题形式来看,与以往的立体几何命题思路有所不同。一是渗透了数学文化,二是组合体比较复杂且缺少直观图。学生遇到的困难主要是三方面:首先,立体几何以应用问题的形式出现学生不太适应;其次,根据题目叙述,学生很难通过抽象的描述构建出具体的几何模型;最后,学生无法画出几何模型的直观图。这三点恰恰反映出,命题的立意是考查高中数学中两大重要的学科素养——数学建模与直观想象。学生虽然掌握了棱柱与棱锥的概念和柱体与锥体的体积公式这些基础知识,但是如果缺乏这两个重要的素养,再好的基础知识也没有用武之地。作为教师,我们不能把造成这种问题的责任归咎于学生,而要深刻反省自身的教学行为,是否将学生学科素养的渗透与提升做到位。

三、教学实践启示

高考是高中教育的重要环节,不仅要落实立德树人的根本任务,而且要引领高中教育教学的方向,因此高考试题具有引导教学的基本功能。2020年,教育部考试中心研制的《中国高考评价体系》《中国高考评价体系说明》中,明确了以“四层”为考查内容,即核心价值、学科素养、关键能力、必备知识,以“四翼”为考查要求,即基础性、综合性、应用性、创新性。以此题为例,我们可以清晰地看到命题是紧扣上述考查内容和要求的。学生遇到的困难,正是我们在教学实践中应该认真反思的问题。唯有立足课程标准、高考评价体系,潜心研究高考试题、教材教参,才能真正做到考与教的有机结合与深度融合。

四、应对策略思考

直观想象是指借助几何直观和空间想象感知事物的形态与变化,利用空间形式(特别是图形),理解和解决数学问题的素养。《普通高中数学课程标准(2022年版)》要求,“通过高中数学课程的学习,学生能提升数形结合的能力,发展几何直观和空间想象能力;增强运用几何直观和空间想象思考问题的意识;形成数学直观,在具体的情境中感悟事物的本质”。高中数学教学中如何培养学生的直观想象素养呢?笔者结合教学实践,谈谈自己的思考。

(一)充分挖掘互联网资源

高中立体几何的知识是培养学生空间想象能力,提升直观想象素养的重要载体。教学中很多难点都产生于学生对空间几何体的认知不足,对空间点线面的位置关系想象不够充分。突破这些难点传统的方法是教师在黑板画图,帮助学生通过对空间几何体直观图的观察,帮助理解空间的一些概念与问题。在互联网飞速发展的今天,教师可以借助互联网中大量有效资源提高课堂教学效率。

比如在讲解柱体体积与锥体体积的关系时,传统的方法是把三棱柱切割成三个等体积的三棱锥,但是学生对如何拆分很难想象。如果借助信息技术手段制作三维切割动画,或者在互联网中提取现成的切割动画,不但能提高学生的学习兴趣,还能通过更科学严谨的画面,降低学生的思维难度,帮助学生加深对两者体积关系加深理解。因此,教师在注重数学知识的传授同时,应充分挖掘互联网中的有益素材,发挥信息技术在空间图形教学中的作用,从而培养学生的实践能力和探究能力,提升学生的数学核心素养。

(二)逐步提升画图能力

立体几何的教学中,培养学生的作图能力是提升直观想象这一素养的重要支撑点。直观想象包括几何直观和空间想象两个层次。传统的教学中,经常看到如下的现象:教师替代学生在黑板上画出几何体的直观图后才开始与学生一起探究解题思路,试卷中的立体几何问题也都会给出几何体的直观图。学生在学习立体几何时,缺少了重要的空间想象过程,只单纯训练了解决数量关系与位置关系的能力,直观想象的素养没有得以提升。当遇到没有给出直观图的题目或者如本文初这道高考试题,学生不能通过空间想象画出直观图时,就会无从下手。

再如,天津高考数学试卷考查多面体和旋转体的体积时,也多次运用数学语言提供已知条件,并没有给出组合体的直观图,这本身就是要求学生通过空间想象,先画出直观图才能进一步运算求解。教师应该如何通过有效的教学设计,帮助学生掌握作图的基本方法,提升作图的能力呢?

1.教师示范。首先,教师要让学生理解直观图的投影原理,并正确示范简单几何体的作图步骤,同时示范如何通过规范的作图规则,表现出点线面的位置关系。让学生了解做空间图形的基本方法,特别是实线与虚线的使用必须科学严谨,逐步从识图开始慢慢过渡到动手画图。在作图教学中,教师的示范作用是不可或缺的,这是学生在观察、模仿中进行思考、理解的依托,也是师生互动的重要环节。

2.学生互评。作为初学者,学生在画图过程中往往会出现各种问题。因此,教师在教学设计中要预留时间,组织学生开展画图分析的互相评价。学生在这种讨论式教学的过程中相互沟通交流,既获得了自身的真实体验,又对自己的认知有了更深刻的理解。比如在讲解本文这道高考题时,教师完全可以组织学生自己画出直观图,并相互讨论直观图的正确性。此题从不同角度能画出不一样的直观图,学生可以通过别人的评价获得对图形更深的理解。有了在学生之间平等的思维碰撞后,可以使学生原先的作图经验、方法得以改良乃至创新,更能有效提高学生的作图能力。

(三)注重结合生活实例

空间几何体的概念都是从生活实物中抽象出来的,点线面的位置关系也是生活中随处可见的,学生对三维空间的认知具有一定感性基础。因此我们要进一步提升学生的直观想象素养,一定要注重与生活实际相结合,一方面提高学生的学习兴趣,也能渗透数学文化,让学生在提高数学素养的同时增加对空间的理性认知。具体来说,有以下几方面可操作。

1.增加实景展示。从古至今,很多享誉中外的建筑都包含了高中简单几何体知识。在互联网时代,我们获取这些实景素材并不困难,这些都是学生获得良好感知的重要素材。它们不但能提升学生学习的积极性,而且能使学生对所学的抽象概念变得具体而容易掌握。

2.适时联系实际。在学习立体几何点线面的位置关系时,教师可以组织学生展开讨论以下问题:教室中有哪些点线面的位置关系?哪些平面的基本事实能在教室中找到实例?生活中还有哪些与教材中类似的实例?教师要把空间学到的原理与实际应用联系结合,提升学生空间想象能力。

3.巧借模型思考。立体模型的使用对概念的形成有非常直观的作用,也能使学生对错误的空间认知有深刻的理解。比如在讲解正四面体的中心是高线的几等分点时,很多学生都错误地认为是三等分点。当教师拿出模型(一个正四面体被拆分成四个相同的三棱锥)后,学生马上直观地看出“没有那么高”“应该是四等分点”,从而形成直觉思维。教师再引导学生探究原因,形成理性认识。这样,学生通过具体的实物模型记住了结论,更正错误的空间认知,提升直观想象素养。

高考试题体现了“立德树人”的教育理念,承载着引领教学与选拔人才的重要使命。因此,教师在日常教学活动中,要紧扣课程标准,重视基础知识教学;要以问题解决为导向,注重数学文化的渗透,把数学知识与生活实践相结合,将核心素养的培养与提升,融入到每一个教学设计中,促进学生创新能力和实践能力的提升,这样才能真正做到“为党育人、为国育才”。

猜你喜欢
直观图作图考试题
酯缩合在高考试题中的应用
酯缩合在高考试题中的应用
一道集训队选拔考试题的推广
例谈几道2018年高考试题
作图促思考
空间几何体的直观图与三视图
平面图形的直观图中线段的变化规律探讨
圆的斜二测画法的直观图是何种椭圆?