岳考捷,贾 晨,王云嵩,牛方勇,马广义,吴东江
大连理工大学精密与特种加工教育部重点实验室,辽宁 大连 116024
随着航空航天、能源动力、石油化工等领域的发展,对材料的高温性能、耐腐蚀性能等提出越来越高的要求。镍基合金具有强度高、冶金稳定性好、加工制造性能优良、耐腐蚀性强等优点,逐渐在各种复杂服役环境中得到广泛应用[1]。例如,航空发动机燃烧室与机匣、核主泵定/转子屏蔽套[2]、三代核电蒸汽发生器传热管等[3]。在过去的二十年中,随着镍基合金的发展,燃气涡轮发动机的推进力提高了60%,而与此同时,燃料消耗量下降了20%[4]。
常用于焊接的镍基合金薄板分为Ni-Cr 合金和Ni-Cr-Mo 合金,用于航空发动机、燃气轮机、核电站等核心装备部件中[5]。其中,Ni-Cr 合金在核电站传热管、航空发动机的金属封严圈、导向叶片冷气导管等部件[6-8]中被广泛应用,因此Ni-Cr 合金焊接接头需要具备优异的高温力学性能、耐应力腐蚀等。常见的用于激光焊接的Ni-Cr 合金有Inconel 600、Inconel 718 以及我国开发的GH4169、GH3039 等[9]。Ni-Cr-Mo 合金常用在核主泵屏蔽套[2,5]和化工设备,长期处于高温、强腐蚀性介质环境中,因此其焊接接头需具有良好的耐腐蚀性。最为典型的Ni-Cr-Mo 合金为Hastelloy C-276[10],常见的还有Hastelloy X[11-12]。
目前镍基合金常用的焊接技术有弧焊、电子束焊接和激光焊接等[13-16],弧焊工艺热输入较大,易造成较大的热应力应变,焊接薄板较为困难;电子束焊接是借助电子束的加速度来形成高热量的焊接技术,具有功率密度高、穿透能力强、深宽比大的特点,但是其设备昂贵、真空度要求高;而激光焊接具有适应性强、焊接速度快、焊缝深宽比大、热影响区小和残余应力小等特点,使得其在镍基薄板焊接中具有明显优势。
本文分别总结了镍基合金薄板激光自熔焊接和激光填丝焊接两种焊接技术下焊缝的微观组织演变、力学性能和耐腐蚀性能变化,介绍多种组织和性能优化方法,并总结焊接变形方面的研究进展,最后指出未来可能的发展方向。
激光自熔焊接技术是实现镍基合金薄板连接的有效手段之一,具有柔性好、精度高、不受材料和磁场影响等优点。相比于电弧焊接,激光焊接具有能量密度高、焊缝深宽比大、热输入小、焊后变形小等优势,已经在航空航天[17]、能源动力等领域的管路结构、屏蔽套、封严圈、蒙皮-骨架结构、支架等薄壁结构的焊接中得到广泛应用[18]。目前,对于焊接过程的微观组织演变、力学性能和耐腐蚀性能变化依然是研究热点。
镍基合金薄板母材一般采用经过轧制处理得到的、具有固溶强化处理或沉淀强化处理状态的板材,其中基体为奥氏体γ 相。Ni-Cr 合金中Cr 元素固溶在γ 基体中,少量Al、Ti、Nb 等元素会形成具有强化作用的沉淀相γ'和γ'',因此在激光焊接后,焊缝容易产生元素偏析和脆性相的析出。Ni-Cr-Mo 合金中Cr、Mo 元素均固溶在基体中,焊后同样易产生元素偏析现象。目前,微观组织的研究主要围绕晶粒形貌与尺寸、析出相的成分和尺寸以及对微观组织的调控。
用于激光焊接的Ni-Cr 合金薄板包括Inconel 718(对应国产GH4169)、Inconel 617、GH3044 和GH188等。国内学者对Ni-Cr 合金薄板焊缝的微观组织开展了大量研究。南昌航空大学孙文君等人[19]焊接GH4169 得到的焊缝微观组织如图1(a)所示,焊缝主要由柱状晶组成,在焊缝中心存在少量等轴晶[20]。激光焊接过程中,熔池的快速凝固可使焊缝晶粒明显细化[21-22]。南昌航空大学王晓光等人[23]和清华大学程昊等人[24]分别在对GH3044 和Inconel 617 激光焊接的研究中发现,通过提高焊接速度的方式降低焊接热输入,能够有效细化焊缝晶粒,减小二次枝晶臂间距(图1(b))。北京航空制造工程研究所的芦伟等人[25]在对GH188 的激光焊接研究中,通过降低激光功率同样使焊缝宽度和晶粒尺寸进一步减小(图1(c))。西班牙学者Hernando 等人[26]用数值模型预测Inconel 718合金焊缝几何形貌和微观组织,二次枝晶臂间距预测误差在1.5 μm 以下。
图1 Ni-Cr 合金焊缝微观组织。(a) 熔合线附近和焊缝中心微观组织[19];(b) 焊接速度对焊缝枝晶的影响[24];(c) 激光功率对焊缝微观组织的影响[25];(d) 微观组织预测[26]Fig.1 Microstructure of Ni-Cr alloy welds.(a) Microstructure near the fusion line and in the weld center[19];(b) The effect of welding velocity on weld dendrites[24];(c) The effect of laser power on microstructure of welds[25];(d) Prediction of microstructure[26]
Ni-Cr-Mo 合金焊接则主要针对Hasetlloy C-276和Hastelloy X 两种材料。国内大连理工大学马广义等人[27-28]在Hastelloy C-276 激光焊接研究中,发现焊缝主要由过渡熔化区(靠近边缘处)的柱状晶和中心的等轴晶组成,焊缝边缘存在平面晶和胞状晶(图2(a))。由于激光焊接中的快速凝固,焊缝晶粒得到了显著细化。在晶粒形貌调控方面,大连理工大学周思雨等人[31-32]通过施加随焊超声振动,使焊缝晶粒及析出相的尺寸减小,焊缝等轴晶尺寸约为未施加超声焊缝晶粒尺寸的一半。并且,施加超声后,焊缝晶粒间的取向差降低,晶粒之间结合度提高(图2(d))。
伊朗学者Azimzadegan 等人[29]和法国学者Graneix 等人[12]对Hastelloy X 的激光焊接研究发现,焊缝边缘同样存在细长的柱状晶(图2(b))。使用相场法模拟Hastelloy X 焊缝中的晶粒形貌(图2(c)),分析实验结果表明,当初生枝晶臂间距大于3 μm 时,会有裂纹产生[30]。
图2 Ni-Cr-Mo 合金焊缝微观组织。(a) Hastelloy C-276 母材、热影响区和焊缝中心处的微观组织[27−28];(b) Hatelloy X 焊缝边缘微观组织[29];(c) 使用相场法模拟焊缝中的柱状晶[30];(d) 母材及超声作用前后焊缝的微观组织EBSD 图[31]Fig.2 Microstructure of Ni-Cr-Mo alloy welds.(a) Microstructure of Hastelloy C-276 base metal,heat affected zone and weld center[27−28];(b) Microstructure of Hastelloy X weld edge[29];(c) The phase field simulation of columnar grains in weld [30];(d) EBSD microstructure of base metal and the weld with or without ultrasonic vibration[31]
焊缝中的元素偏析和析出相是微观组织特征的重要组成部分。在Ni-Cr 合金焊接中,印度学者Janaki Ram 等人[33]使用脉冲激光焊接Inconel 718 合金,在焊缝中和熔合线附近的晶界处观察到颗粒状的Laves 相,如图3(a) 所示。印度学者Sonar 等人[1]指出,高能量密度的激光焊接工艺可有效减少 Inconel 718 焊缝中的Nb 偏析 (10~12%) 和相应的Laves 相发展 (4~6%)。其他学者的研究同样表明,激光焊接过程中熔池的快速凝固,有效抑制了由Nb、Mo 等元素产生的脆性相在晶界处的析出,同时还有利于具有强化效果的γ′相的产生[34-36]。然而,由于快速冷却(10000 ℃/s),焊接接头存在孔隙缺陷和热影响区液化开裂倾向[33]。此外,清华大学程昊等人[24]通过降低热输入有效降低了Inconel 617 焊缝元素偏析程度,减小脆性相的析出(图3(b))。
Ni-Cr-Mo 合金的元素分布和析出相特征同样是研究重点之一。大连理工大学马广义等人[28]指出,Hastelloy C-276 焊缝中元素的微观偏析程度降低(与传统电弧焊接相比),并且焊缝中的脆性相在快速凝固过程中得到了抑制。大连理工大学周思雨等人[31]使用超声振动调控微观组织的研究中,焊缝内析出相的尺寸减小,其含量相较于未施加超声由2.15%降低至0.62%,且焊缝金属的元素分布更加均匀(图3(c))。伊朗学者Jelokhani-Niaraki 等人[37]焊接Inconel 625 时,发现在焊缝中仍有Laves 相产生。伊朗学者Azari M等人[38]调整激光能量密度,发现激光热导焊接和匙孔焊接两种模式下,焊缝组织和元素分布基本一致。
图3 镍基合金焊缝析出相。(a) Inconel 718 焊缝中的Laves 相[33];(b) 热输入变化对Inconel 617 焊缝析出相的影响[24];(c) 超声振动对Hastelloy C-276 焊缝析出相的影响[31]Fig.3 The precipitation phase in nickel-based alloy welds.(a) The Laves phase in the Inconel 718 weld[33];(b) The effect of heat input on the precipitation phase of the Inconel 617 weld[24];(c) The effect of ultrasonic vibration on the precipitation phase in Hastelloy C-276 welds[31]
因此,目前对于镍基合金薄板焊接微观组织演变已经有了比较深入的认识,并且能够通过工艺参数调整,如提高焊接速度、降低激光功率等手段和采用辅助工艺方法,如施加随焊超声等对晶粒形貌、元素偏析及析出相进行调控(表1),这对于进一步优化焊接接头使用性能,控制焊接质量具有重要的作用。但是在微观组织的数值模拟预测方面国内的研究相对较少,为了进一步推进镍基合金激光焊接技术的发展,需要在微观组织预测方面展开深入研究。
表1 自熔焊微观组织研究现状Table 1 Research status of microstructure of autogenous
镍基合金因其具有优异的力学性能和耐腐蚀性能,成为严酷服役环境下不可或缺的材料。显微硬度是表征焊接接头性能均匀性和接头软化行为的有效手段。在镍基合金薄板激光焊接研究中,焊缝显微硬度分布均匀,且均优于母材,这与焊缝晶粒细化和硬脆的析出相有关[37]。通过调整激光功率和焊接速度,降低焊接热输入,能够提高焊缝的显微硬度[21,23],如图4所示。
图4 不同焊接热输入下接头的显微硬度[23]Fig.4 Microhardness of the welded joint with different heat input[23]
室温拉伸性能是评价焊接接头强度、塑性和断裂行为的重要手段,因此对镍基合金室温抗拉性能的研究较多。针对Ni-Cr 合金的室温拉伸性能研究表明,焊接接头强度均可达到母材的90%以上,接头伸长率均明显低于母材伸长率,焊缝为接头中最薄弱的区域[19,25,31,35-36,39-42]。从断口形貌分析可知,焊接接头均发生韧性断裂(图5(a))[43]。对拉伸性能进行调控始终是研究的重点内容。目前普遍认为,细化晶粒,减少有害脆性相在晶界处的析出是提高抗拉强度的关键方式[23]。因此,在保证焊缝成形质量良好时,通过增大焊接速度和减小激光功率,减小焊接热输入,能够有效提高焊接接头的抗拉强度和韧性[23,25-26],如图5(c)所示。南昌航空大学陈玉华等人[44]在稀土元素对GH4169 激光焊接接头的影响的研究中,通过在焊缝中添加CeO2提高了焊缝的韧性和塑性。此外,焊缝的几何形貌和晶粒形貌的不均匀使得焊缝在拉伸变形中各区域变形不协调,从而导致焊接接头强度的降低[23]。
Ni-Cr-Mo 合金薄板激光焊接接头具有相似的拉伸性能。国外Jelokhani-Niaraki 等人[37]发现热输入过低而无法形成熔透的焊缝时,会有裂纹缺陷的存在,焊缝抗拉强度低。而国内大连理工大学马广义等人[45]在Hastelloy C-276 激光焊接接头的拉伸性能研究中,发现焊接接头的常温抗拉强度为原始母材的88.6%,断裂发生在焊缝位置,断口呈韧性断裂特征(图5(b))。焊缝性能的降低与元素偏析导致的析出物和快速凝固引起的非平衡空位缺陷有关[45]。此外,接头形貌变化较大的位置产生的应力集中,也是导致焊接接头室温抗拉强度低于母材的原因之一[33,46]。
图5 Ni-Cr-Mo 合金焊接接头拉伸性能。(a) Ni-Cr 合金的母材与焊缝拉伸断口形貌[46];(b) 通过调整热输入调控抗拉强度[23];(c) Ni-Cr-Mo 合金的母材与焊缝拉伸断口形貌[45]Fig.5 Tensile properties of Ni-Cr-Mo alloy welded joints.(a) Fracture surfaces of Ni-Cr alloy base metal and weld[46];(b) Tensile strength with different heat input[23];(c) Fracture surfaces of Ni-Cr-Mo alloy base metal and weld[45]
在航空发动机、核主泵等装备中,材料通常会在较高的温度下服役,因此镍基合金焊接接头的高温力学性能评价对于焊接工艺的选取具有重要意义。在镍基合金薄板激光焊接技术中,高温力学性能主要以重庆大学曲凤盛等人[47]和大连理工大学吴东江等人[43]的研究为主,主要在高温塑性和高温拉伸强度两方面。在高温塑性方面,Inconel 718 (Ni-Cr 合金)焊接接头在横向拉力下,950 ℃时最大伸长率达到458.56%,焊缝未产生变形。在纵向拉伸条件下,965 ℃时最大伸长率为178.96%,焊缝和基体均发生变形。在高温拉伸变形下,焊缝晶粒发生动态再结晶,原来的柱状枝晶转变为柱状枝晶和等轴晶的混合组织。并且高温变形后,焊缝中部分Laves 相转变为δ 相,但焊缝中仍有一小部分残余Laves 相(图6(a))[47]。在高温强度方面,Hastelloy C-276 (Ni-Cr-Mo 合金)焊缝的高温抗拉强度与母材基本一致(图6(b)),焊缝与母材产生均匀的塑性变形,具有相同的加工硬化趋势,拉伸断口如图6(c)所示[43]。
图6 镍基合金高温拉伸性能。(a) Ni-Cr 合金高温拉伸前后焊缝中的Laves 相[47];(b) Ni-Cr-Mo 合金在不同温度下的拉伸曲线[43];(c) Ni-Cr-Mo 合金400 ℃拉伸断口[43]Fig.6 High temperature tensile properties of nickel-based alloy.(a) The Laves phase in the weld of Ni-Cr alloy before and after high temperature tensile test[47];(b) Curves of tensile strength of Ni-Cr-Mo alloy welded joints in different temperatures[43];(c) Fracture surfaces of Ni-Cr-Mo alloy welded joint in 400 °C [43]
镍基合金焊接接头在航空发动机、燃气轮机、核主泵等服役环境中往往伴随有高强度振动,因此疲劳强度对于需要长期服役的焊接接头至关重要。目前针对镍基合金薄板激光自熔焊接接头疲劳性能的研究集中在Ni-Cr-Mo 合金。在Hastelloy C-276 疲劳试验研究中[48],焊接接头和母材的S-N 曲线斜率基本相同(图7(a)),焊接接头疲劳性能和母材的基本相当,焊接接头在母材和焊缝处随机断裂。疲劳失效行为的研究同样具有重要价值。Hastelloy C-276 焊缝区断口的疲劳裂纹起源于侧表面棱角处和焊缝表面,主要沿厚度方向进行扩展,焊缝表面是主要裂纹源。疲劳裂纹扩展区呈现出准解理断裂特征(图7(b))。
图7 Ni-Cr-Mo 合金的疲劳性能测试[48]。(a) 母材和焊缝的S-N 曲线;(b) 焊缝区疲劳断口(700 MPa 循环)Fig.7 Fatigue proporty of Ni-Cr-Mo alloy welded joint[48].(a) S-N curves for base metal and welded joints;(b) Fatigue fracture furface of the weld (cycling at 700 MPa)
镍基合金常被用在具有腐蚀性介质的场合,如核电站、船舶工业等,因此可靠的耐腐蚀性是对镍基合金焊接接头的严格要求。目前,镍基合金薄板激光自熔焊接接头的腐蚀性能研究集中在Ni-Cr-Mo 合金。大连理工大学马广义等人[27]研究发现,Hastelloy C-276 激光焊接接头在NaCl 溶液中,母材发生选择性腐蚀,而由于元素偏析,焊缝以晶间腐蚀为主,如图8(a)。在酸性溶液中,焊缝和母材腐蚀趋势基本相当,但焊缝处腐蚀速度明显较慢。在强碱性溶液条件下,焊缝处腐蚀趋势较强,腐蚀速度比母材慢。通过随焊超声方式可对焊缝耐腐蚀性能进行调控。大连理工大学周思雨等人[31]研究表明,超声可抑制焊缝内Mo 元素的偏析,减小p 相的含量,从而降低焊缝晶界腐蚀敏感性,提高其耐腐蚀性。因此,Ni-Cr-Mo合金激光焊接接头同样具有良好的耐腐蚀性。
图8 Ni-Cr-Mo 合金腐蚀性能[27]。(a) 腐蚀后的母材和焊缝形貌(NaCl 溶液);(b) NaCl 溶液电化学极化曲线;(c) 酸性溶液电化学极化曲线;(d) 碱性溶液电化学极化曲线Fig.8 Corrosion properties of Ni-Cr-Mo alloy[27].(a) Corrosion morphology of the base metal and the weld (in NaCl solution);(b) Polarization curves in NaCl solution;(c) Polarization curves in acid solution;(d) Polarization curves in alkaline solution
综上所述,激光焊接自熔焊接中,在微观组织方面,由于熔池的快速凝固,焊缝中的晶粒得到细化,微观偏析程度减小,析出相得到一定程度的抑制。通过工艺参数调整和辅助调控手段,是使这些效果进一步提升的有效方式。力学性能方面,镍基合金焊接接头室温抗拉强度均不及母材,而高温性能则与母材相当。Ni-Cr-Mo 合金激光焊接接头在中性、酸性和碱性溶液中均表现出优异的耐腐蚀性能。此外,在一些情况下,镍基合金薄板激光自熔焊接过程中会有缺陷产生,这对焊缝性能具有十分不利的影响[30,49-56]。
为了进一步提升镍基合金薄板激光焊接接头的力学性能和耐腐蚀性能,开发了激光填丝焊接技术。填丝焊接具有更强的间隙容错能力,可降低对工件焊前加工和装夹精度的要求。除此之外由于填充金属的加入,焊缝微观组织与性能得到了进一步调控,与自熔焊相比焊接接头的拉伸强度明显提高。目前针对镍基合金薄板的激光填丝焊接研究集中在Ni-Cr-Mo 合金,本节将从微观组织、力学性能和耐腐蚀性能三方面加以介绍。
Ni-Cr-Mo 合金薄板激光填丝焊接中,对微观组织的研究包括晶粒形貌、析出相以及微观组织调控方法。晶粒形貌方面(图9(a)),大连理工大学吴冬冬等人[57]对Hastelloy C-276 激光填丝焊接接头研究发现,焊缝上、下余高由边缘的柱状晶和中心等轴晶组成(图9(b)),焊缝中部区域主要由焊缝中心等轴晶和靠近焊缝边缘的柱状晶组成,在熔合线处存在少量平面晶和胞状晶(图9(c))。与母材组织相比,焊缝微观组织得到显著细化;与自熔焊接相比,中心等轴晶的尺寸略有增大。通过工艺参数调整和辅助工艺,可进一步调控焊缝的晶粒形貌。大连理工大学柴东升等人[58]研究发现脉冲宽度和脉冲频率通过影响脉冲激光占空比而影响微观组织。占空比减小的同时,热输入降低,晶粒尖端生长速率和温度梯度显著增大[59],从而使焊缝晶粒细化(图9(d)~(g)),这与激光自熔焊接的研究结果一致[46]。大连理工大学程波等人[60]在焊接过程中施加低温冷却,提高熔池凝固速度,可使得焊缝晶粒进一步细化。
图9 Ni-Cr-Mo 合金激光填丝焊接接头形貌与微观组织。(a) 焊缝整体形貌[57];(b) 上、下余高边缘及中心处微观组织[57];(c) 焊缝中心、熔合线与过渡熔合区的微观组织[57];(d) 脉冲宽度为4 ms 时微观组织[46];(e) 脉冲宽度为8 ms 时微观组织[46];(f) 脉冲频率为50 Hz 时微观组织[46];(g) 脉冲频率90 Hz 时微观组织[46]Fig.9 Morphology and microstructure of Ni-Cr-Mo alloy welded joints in laser welding with filler wire.(a) Morphology of the welded joint[57];(b) Microstructure in edge and center of the reinforcement[57];(c) Microstructure of the weld center,fusion line and transition fusion zone[57];(d) Microstructure with the pulse duration of 4 ms[46];(e) Microstructure with the pulse duration of 8 ms[46];(f) Microstructure with the pulse frequency of 50 Hz[46];(g) Microstructure with the pulse frequency of 90 Hz[46]
在微观偏析与析出相研究方面,Ni-Cr-Mo 合金激光填丝焊接接头的元素偏析与自熔焊接基本一致,与电弧焊接相比,元素偏析程度明显降低[57]。Mo 元素的微观偏析使焊缝晶界处产生富含Mo 元素的p 相和μ 相,这些析出相孤立、随机分布在焊缝晶界处。此外,焊缝中存在少量分布于柱状枝晶晶界的链状析出物[61],如图10(a),这些析出物加剧了焊缝中元素微观不均匀性,而且会在析出相附近形成贫Mo 区,对焊缝的腐蚀性能不利。调整脉冲宽度和脉冲频率可以实现对焊缝中析出相的调控[61]。如降低脉冲宽度与频率的比值或减小占空比,均可减少Mo 元素的偏析,如图10(b)~(c)。低温冷却的方式对调控析出相同样有效[60],可使析出相含量由1.78%下降为0.60%,降低了近66.0%(图10(d)~(e))。
图10 Ni-Cr-Mo 激光填丝焊缝微观组织。(a) 焊缝中的链状析出物[61];(b) 脉冲宽度对Mo 元素偏析影响[61];(c) 脉冲频率对Mo 元素偏析影响[61];(d) 未施加低温冷却的焊缝微观组织[60];(e) 施加低温冷却后的焊缝微观组织[60]Fig.10 Microstructure of the Ni-Cr-Mo alloy weld of laser welding with filler wire.(a) Precipitate chain in the weld[61];(b) The effect of pulse duration on the segregation of Mo[61];(c) The effect of pulse frequency on segregation of Mo[61];(d) Microstructure of the weld without low temperature cooling process[60];(e) Microstructure of the weld with low temperature cooling process[60]
由此可知,目前对Ni-Cr-Mo 合金激光填丝焊接微观组织演变机制已有较为深入的理解,并且能够通过调整工艺参数如脉冲宽度和频率等方法和施加低温冷却等辅助工艺,实现对焊缝晶粒形貌、元素偏析及析出相进行调控。而对于Ni-Cr 合金填丝焊接的研究则仍旧有所欠缺。
激光填丝焊接接头由于余高的存在,其在服役过程中受力情况与失效形式均与自熔焊接不同,因此需要对其力学性能进行研究。目前对激光填丝焊接接头力学性能的研究同样集中在Ni-Cr-Mo 合金。
在显微硬度方面,大连理工大学吴冬冬等人[62]研究发现,Hastelloy C-276 激光填丝焊接接头中,横向不同晶粒形态区域以及纵向不同区域的显微硬度分布均匀一致,且与母材硬度值相当,在焊缝边缘未发现热影响区软化现象,如图11 所示[57]。拉伸性能研究方面,激光焊接对焊缝产生细晶强化作用,填丝后产生的余高也可提高焊缝强度,因此填丝焊接接头拉伸试验均断于母材位置处,焊接接头抗拉强度高于母材和激光自熔焊接接头,激光填丝焊接接头和母材的屈服强度结果较为相近[63]。因此,在满足表面形貌要求的前提下,激光填丝焊接是提高Ni-Cr-Mo 合金焊接接头拉伸性能的有效方式。
图11 Ni-Cr-Mo 合金激光焊接接头显微硬度[57]Fig.11 Microstructure of Ni-Cr-Mo alloy welded joints of laser welding with filler wire[57]
为研究服役环境中的变化载荷对激光填丝焊接接头性能产生影响,保证Ni-Cr-Mo 合金长期服役时的可靠性,需要对其疲劳性能进行研究。大连理工大学于京令等人[64]对Hastelloy C-276 激光填丝焊接接头的高周疲劳性能进行研究(图12(a)),发现接头高周疲劳强度为396.6 MPa。Ni-Cr-Mo 合金接头失效时,裂纹主要在焊缝上表面焊趾附近萌生,并沿板厚方向扩展,在沿焊接方向扩展过程中会跨越熔合线,在焊缝区内和相邻母材区内扩展(图12(b))。裂纹源区断口表面呈解理特征,在裂纹扩展区呈现典型的疲劳条纹特征(图12(a))[64]。因此,尽管填丝焊接对提高接头静态强度有利,但余高与母材过渡位置成为疲劳失效的重点部位。
图12 Ni-Cr-Mo 合金激光填丝焊接接头疲劳性能[64]。(a) 焊缝附近断裂表面;(b) 焊趾处萌生的裂纹沿板厚方向扩展Fig.12 Fatigue property of Ni-Cr-Mo alloy welded joints of laser welding with filler wire[64].(a) Fracture surfaces near welds;(b) The crack that initiated from the weld toe propogates in the direction of thickness
激光填丝焊接接头的腐蚀性能仍旧是研究的重点内容,而对腐蚀性能的研究依然以Ni-Cr-Mo 合金为主,尤其以Hastelloy C-276 为代表。大连理工大学吴冬冬等人[63]对Hastelloy C-276 焊接接头的腐蚀性能进行了研究,发现激光填丝焊接接头与激光自熔焊接接头的电化学腐蚀特性相同,焊缝在中性和酸性溶液中的耐腐蚀性能均不亚于母材。此外,采用低温冷却方式能够进一步提高焊接接头的腐蚀性能[65]。除了电化学腐蚀,大连理工大学柴东升等人使用超声空蚀测试平台对激光填丝焊接接头的空蚀性能进行了研究[66](图13),发现焊缝金属组织细化以及焊缝金属中含有大量亚晶界,因此焊缝与母材相比有更好的抗空蚀性能。由于晶粒取向差较大,焊缝中空蚀最严重的区域位于焊缝中心两侧沿焊接方向生长的树枝晶与指向焊缝中心的树枝晶交汇区域。由此可知,Ni-Cr-Mo 合金激光填丝焊接接头同样具有优异的耐腐蚀特性。
图13 Ni-Cr-Mo 焊接接头空蚀性能[66]。(a) 焊缝空蚀后形貌;(b) 发生空蚀的焊缝晶界;(c) 发生空蚀的母材孪晶界Fig.13 Cavitation erosion property of Ni-Cr-Mo alloy welded joint [66].(a) The morphology of the weld after cavitation erosion;(b) Cavitation eroded grain boundary in the weld;(c) Cavitation eroded twin boundary in base metal
综上所述,目前国内外对镍基合金薄板激光填丝焊接的研究相对较少,并且集中在Ni-Cr-Mo 合金。在激光焊接熔池的快速凝固下,Ni-Cr-Mo 合金激光填丝焊接接头的微观组织得到明显细化,接头具有优异的室温力学性能,但由于焊缝余高的存在,焊趾处成为疲劳断裂的重要位置。焊接接头表现出良好的耐腐蚀性能,能够满足多种复杂的服役环境。针对Ni-Cr 合金填丝焊接的研究仍有较大的欠缺,为了减少偏析和抑制析出相产生、抑制热影响区裂纹,提高焊接接头质量,Ni-Cr 合金薄板焊接一般采用低功率激光或脉冲激光,因此激光光斑直径极小,在精密构件的焊接过程中对工件和焊丝的对中性要求大大增加。此外,目前的激光填丝焊接设备体积较大,灵活性差,在某些狭小空间内难以应用。因此对Ni-Cr 合金填丝焊接的研究和应用仍旧较少。但是,Ni-Cr-Mo 合金薄板激光填丝焊接研究结果证明,填丝焊接在提高成形质量、调控微观组织、提升接头力学及耐腐蚀性能等方面具有较大的潜力,因此未来仍旧需要开展相关的研究工作。
由于薄板的刚度较差,在镍基合金薄板激光焊接的研究中,焊接变形是一个不可忽视的问题,焊接变形的存在对于焊接结构件的制造以及使用性能都将产生很大影响。在焊接过程中材料的不均匀受热、热梯度、材料的局部塑性应变及焊接残余应力的作用是产生各种焊接变形的根本原因[67-68]。由于焊接变形控制的难度较大,目前关于镍基合金薄板激光焊接变形问题的研究仍然较少,主要以大连理工大学吴东江团队和北京工业大学肖荣诗团队的研究为主。薄板焊接变形主要分为面内变形和面外变形,面内变形主要是横向、纵向收缩变形,而面外变形主要为挠曲变形和角变形[67]。此外,镍基合金均以Ni 元素为基体,因此薄板的变形问题与材料化学成分的关联较小。
其中针对焊接产生的面内变形,郭玉泉等人[27,69]开展了Hastelloy C-276 薄板激光自熔焊接变形有限元模拟(图14 所示),发现通过调整夹具拘束距离可以有效地控制焊接横向收缩变形,夹具拘束距离减小后,横向收缩变形减小约3.6 倍。北京工业大学曹政等人[70]采用随焊高频冲击的方法对GH3128 高温合金进行激光自熔焊接,通过在熔池后方施加高频冲击使得焊缝处的焊后残余应力由无冲击时的390.9 MPa 降低至116.1 MPa,减小了约70%,使焊接构件沿焊缝方向的尺寸收缩降低80%,如图15 所示。
图14 焊接变形有限元模拟[69]。(a) 模拟结果;(b) 测量结果Fig.14 Finite element simulation of welding deformation[69].(a) Simulation results;(b) Measurement results
图15 随焊冲击方式抑制焊接变形[70]。(a),(d) 无冲击;(b),(e) 焊后冲击;(c),(f) 随焊冲击Fig.15 Suppressed welding deformation with in-site high frequency peening[70].(a),(d) Without peening;(b),(e) Peening after welding;(c),(f) In-site peening in welding
在面外变形研究方面,通过调整工艺参数控制挠曲变形是简单可行的方式。大连理工大学刘俊等人[62]指出,线能量增大会使产生焊接变形的等效载荷增大,使样件的纵向挠曲变形呈增大趋势(图16(a));增大相对送丝量可以在等效载荷不变的情况下增大样件弯曲刚度,进而减小纵向挠曲变形(图16(b))。随焊激冷的方法可对变形进一步调控[71],通过在焊接热源后面适当位置设置同步移动的、对焊缝及近缝区产生急剧冷却作用的热沉,在焊缝区产生局部可控的准稳态畸变场来控制由残余应力导致的面外变形。当冷却强度为15000 W/(m2∙K)时,面外变形可完全消除,如图16(c)~(e)。随焊高频冲击方法[70]同样对面外变形有较好的调控效果,实验结果表明,该方法可使构件垂直于焊缝方向挠曲变形量降低74.5%。
图16 Hastelloy C-276 薄板焊接变形。(a) 线能量密度对挠曲变形的影响[62];(b) 相对送丝量对挠曲变形的影响[62];(c) 未施加热沉的残余变形[71];(d) 冷却流量水流量48 mL/min 的残余变形[71];(e) 冷却流量水流量68 mL/min 的残余变形[71]Fig.16 Welding deformation of Hastelloy C-276 sheet.(a) Effect of linear energy density on deflection[62];(b) Effect of the relative wire speed on the deflection[62];(c) Residual deformation without heat sink[71];(d) Residual deformation with the flow rate of 48 mL/min[71];(e) Residual deformation with the flow rate of 68 mL/min[71]
综上所述,镍基合金薄板激光焊接变形主要以面内横纵向收缩和面外挠曲变形和角变形为主,与自熔焊接相比,填丝焊接对于焊缝起到了填充金属的作用,一定程度弥补了由于面内变形产生的收缩,因此填丝焊接对于面内收缩变形有一定的调控作用,而面外变形两者没有明显区别。使用有限元手段可对变形进行预测,通过工艺参数调整和工艺调控手段如改变夹具拘束距离、随焊激冷、随焊高频冲击,可以实现对焊接变形的控制。但是对于焊接变形的预测精确性及抑制方法的多样性还需要不断探索和深入研究,从而进一步促进镍基合金薄板激光焊接技术的发展。
激光自熔焊接技术和激光填丝焊接技术是实现镍基合金薄板连接的有效方式,在微观组织演变、力学性能和耐腐蚀性能变化和焊接变形规律方面已有较多研究。
1) 微观组织方面,熔池的快速凝固使得自熔焊接的焊缝晶粒得到显著细化,并可在一定程度上抑制微观偏析现象和析出相的产生。通过工艺参数控制和施加辅助工艺可实现对微观组织的调控。激光填丝焊接的研究目前仅针对Ni-Cr-Mo 合金,具有与自熔焊接相似的特征。
2) 力学性能方面,自熔焊接接头的室温力学性能低于母材,但高温力学性能则与母材相当。焊缝余高的形成使得激光填丝焊接接头的室温拉伸性能优于母材,但余高边缘的焊趾成为疲劳失效的重要位置。自熔焊接接头和填丝焊接接头均表现出优异的耐腐蚀性能。
3) 焊接变形方面,采用有限元方法可实现变形的预测,并通过工艺参数调整、拘束度控制和辅助工艺能够有效抑制镍基合金薄板的变形。但该方面的研究仍旧较少。
尽管目前对镍基合金薄板的激光焊接技术已有较为深入的理解,但在多个方面仍旧需要进一步的研究。首先,需要开发Ni-Cr 合金的激光填丝焊接技术,并对其微观组织演变机制、力学和耐腐蚀性能进行研究;其次,针对焊接接头的微观组织、力学和耐腐蚀性能,仍需提出更多用于调控的工艺方法和用于精准预测的模型,并提出微观组织、力学和耐腐蚀性能的自适应调控策略,进而开发出新型智能化焊接工艺;针对焊接变形问题,需要提出更多可靠的抑制方法和更加先进的精确预测技术,如采用实测变形数据与有限元模拟变形结果相结合进行样本采集,通过样本学习、测试和误差训练确定传递函数,得到焊接变形人工神经网络模型等先进的焊接变形预测方法,促进镍基合金薄板激光焊接技术的进一步应用。