硫/铁硫化物自养反硝化脱氮除磷研究进展

2022-12-29 14:27王春荣宋俊学刘苗苗
工业水处理 2022年12期
关键词:供体硫化物硝酸盐

魏 秋,王春荣,宋俊学,刘苗苗,张 浙,胡 馨

(1.中国矿业大学(北京)化学与环境工程学院,北京 100083;2.中国科学院生态环境研究中心环境水质学国家重点实验室,北京 100086;3.山东师范大学地理与环境学院,山东济南 250358)

农业化肥使用和生活废水排放会产生大量含氮、磷废水,严重污染水体〔1〕。须对氮、磷进行有效控制,防止其对环境和人体健康造成进一步危害。NO3-的处理方法有离子交换法、反渗透法、化学还原法、吸附法和生物法。生物脱氮工艺运行成本低,不会造成二次污染,是最具效益和可行性的硝酸盐去除工艺之一〔2〕,但异养反硝化时需外加碳源。磷的处理方法包括化学沉淀法、生物法、物理吸附法、人工湿地、膜处理法等,其中化学沉淀法和生物法处理效果好且应用广泛〔3〕。化学沉淀法需添加聚合氯化铝(PAC)等絮凝剂,成本较高;生物处理受挥发性脂肪酸(VFA)、好氧池溶解氧、二沉池污泥回流等影响,工艺需进行优化。

自养反硝化是在自养反硝化菌的作用下,以CO32-、HCO3-等为碳源,无机物S2-、S2O32-、Fe、Fe2+、H2等为电子供体,将NO3--N、NO2--N还 原为N2〔4〕。硫、铁硫化物能被自养反硝化菌(如脱氮硫杆菌)利用,在缺氧和中性条件下将NO3--N还原为N2;同时反硝化过程产生的酸能促进硫铁矿的溶解,提供更多硫化物和Fe2+作为电子供体。Fe2+氧化产生Fe3+,可与PO43-反应生成沉淀,达到同时去除氮、磷的目的,且自养反硝化产泥量少、成本低,系统可保持稳定的酸碱度,引起人们广泛关注〔5-6〕。笔者对国内外学者应用硫/铁硫化物自养反硝化的研究进行总结,为进一步研究自养反硝化脱氮除磷工艺提供一定参考。

1 硫/铁硫化物自养反硝化原理

硫/铁硫化物自养反硝化以硫/铁硫化物为电子供体,NO3-为电子受体,利用无机碳(CO2、HCO3-、CO32-)为碳源将NO3-还原为N2〔4〕,其反应过程如图1所示。

图1 硫/硫铁矿自养反硝化过程示意Fig.1 Diagram of autotrophic denitrification process of sulfur/pyrite

自养反硝化菌群不能直接吸收利用作为电子供体的硫,其电子的转移途径可能为:硫与细胞表面的硫醇基团作用生成硫醚结合的硫原子,然后将其运输到细胞基质;或在中性和碱性条件下HS-亲核攻击S0导致S8裂解成多硫化物,然后通过多硫化物载体蛋白穿过细胞膜,与硫转移酶发生反应〔7〕。硫铁化物作为固相的电子供体时,微生物也不能直接吸收利用。最近的研究发现微生物以自由游离方式存在,且游离细胞的硝酸盐还原率与脱氮率相近,表明酸性溶解或氧化断裂Fe—S键进入细胞体内作电子供体,供微生物利用〔8〕。

从式(1)可以看出,硫作电子供体的自养反硝化会产生H+,降低系统的pH,而大多数自养反硝化菌的最适宜环境为中性,以硫作电子供体会抑制反硝化过程。

与硫相比,铁硫化物作为电子供体时能保持系统pH的稳定,同时减少硫酸盐的生成,防止二次污染。反硝化脱氮过程产生的Fe3+与PO43-反应生成沉淀,或水解产生Fe(OH)3,对PO43-产生吸附作用〔9〕,达到同时脱氮除磷的目的。相关反应式如式(2)~式(11)所示〔10-11〕。

2 硫/铁硫化物自养反硝化的影响因素

硫/铁硫化物自养反硝化的速率主要受水力停留时间(HRT)、温度、pH和碱度等的影响。HRT越长,反硝化效果越好,脱氮除磷越彻底;反硝化菌群属于嗜温性菌,温度低于20℃时反硝化速率被明显抑制;pH在6.5~7.0时菌群活性最高〔12〕。

2.1 HRT

HRT是影响自养反硝化效果的重要因素之一,进水硝酸盐浓度越高,所需HRT越长。不同HRT下,各填料对氮、磷的去除效果如表1所示。

表1 不同HRT下氮、磷的去除率Table 1 Removal rate of nitrogen and phosphorus under different HRT

Weili ZHOU等〔14〕研究发现,硫作电子供体、进水硝酸盐为43 mg/L(以N计)时,HRT为4 h可以去除80%~90%的硝酸盐。Yongde LIU等〔20〕用硫去除20 mg/L的NO3--N,HRT为4h时去除率达到99.18%。Ruihua LI等〔6〕利用磁黄铁矿自养反硝化技术去除城市污水处理厂二级出水中的氮和磷,当进水NO3--N、PO43--P分别为21.1、2.6 mg/L,HRT为24 h时,出水NO3--N、PO43--P分别为1.9、0.3 mg/L。李睿华等〔15〕用黄铁矿和石灰石作填料的生物滤池处理二级城市污水,HRT为5 d、进水NO3--N为25.53 mg/L、TP为4.17 mg/L时,出水NO3--N、TP分别为0.94、0.04 mg/L。袁玉玲〔22〕以FeS2为填料研究自养反硝化过程,进水NO3--N为30 mg/L、TP为15 mg/L时,FeS2自养反硝化的最优HRT为6 d,TN、TP的去除率可达86.1%、43.7%。单独将磁黄铁矿作填料时,自养反硝化需要24 h才能取得较好的出水效果,采用黄铁矿或混合石灰石时HRT需要5 d以上,工程实际应用受到限制。

陆娜娜〔23〕用硫与天然硫铁矿的复合填料对氮磷进行去除,结果表明,进水NO3--N、PO43--P分别为20、0.5 mg/L时,反应器的HRT越长,出水NO3--N含量越低;S+FeS、S+Fe1-xS、S+FeS2作填料时,硝酸盐被完全去除的最佳HRT分别为12、12、9 h。Yan YANG等〔24〕以纳米黄铁矿为电子供体处理实际二级出水,进水含氮(13.81±1.52)mg/L、含磷(2.44±0.05)mg/L,HRT在0.6~3.6 h时几乎完全脱氮〔总有机氮为(0.045±0.011)mg/L〕;HRT为0.6 h时,出水中的磷平均低至0.03 mg/L,磷去除率平均为98%。硫与硫铁矿联合使用可以缩短HRT;烧制纳米黄铁矿后,比表面积增加,HRT缩短至0.6 h,但烧制纳米黄铁矿的成本不经济,不能实际应用。

以单独的硫作电子供体,HRT在几小时内即可去除80%~100%的硝酸盐,但对磷无去除效果。以硫铁矿或硫铁矿混合石灰石作电子供体,HRT在1 d或5~6 d能达到很好的处理效果。HRT为0.6 h,纳米黄铁矿对氮、磷的去除率在98%,但处理成本增加。

2.2 温度

温度影响微生物的活性。自养反硝化菌通常表现出嗜温行为,反硝化最佳温度约为30℃,低于20℃或高于40℃会对反硝化过程产生明显抑制作用。Weili ZHOU等〔25〕以硫作电子供体,当进水NO3--N为13 mg/L、温度为10~20℃时,系统可去除49.8%的硝酸盐和40.0%的总氮;而温度高于20℃时,可去除70%以上的硝酸盐和总氮。缪博等〔26〕发现低温条件会明显抑制自养反硝化过程,5℃时的自养反硝化速率仅为25℃时的3.2%,15℃时的反硝化速率为25℃的24%,且硝酸盐大部分转化为亚硝酸盐。

温度升高有利于自养反硝化过程。Weili ZHOU等〔14〕以硫-石灰石为填料,28℃下去除10 mg/L硝酸盐(以N计)的HRT为2.5 h,8℃下HRT为4.2 h时仅能去除一半硝酸盐。蒲娇阳〔27〕利用硫铁矿处理模拟水中的硝酸盐,反应体系为20℃时的反硝化速率较30℃时的降低50%,同时出现NO2--N积累;调整温度为30℃时反硝化速率恢复到原水平,温度低于20℃会抑制反硝化的进行。Fangmin CHEN等〔28〕以硫为电子供体,在进水NO3--N为50 mg/L、温度从17℃升至40℃、HRT为12 h的条件下对出水进行监测。结果表明,温度为17℃时出水NO3--N为34.25 mg/L;温度升至35℃时出水中的NO3--N为15.56 mg/L;进一步升至40℃,出水硝酸盐升高,表明温度≥40℃或≤17℃都会抑制反硝化作用。Ruihua LI等〔29〕以FeS作电子供体,发现温度从5℃升至10℃时,NO3--N去除速率从3.5 mg/(L·d)升至17 mg/(L·d);温度升至28℃时,NO3--N去除速率增加到21 mg/(L·d);温度进一步升至40℃时,NO3--N去除速率降至16.9 mg/(L·d)。

2.3 pH和碱度

pH和碱度是影响微生物活性的重要参数。pH过高或过低都会影响微生物的活性,进而对反硝化产生抑制〔30〕。自养反硝化菌的最适pH在6.8~8.2〔31〕。

霍珊〔32〕考察了硫单独存在下pH对自养反硝化的影响,结果表明,pH在7~9时对反硝化无影响;pH为6时反硝化速率明显降低并出现亚硝酸盐的积累;pH为5,反应时间为30 h时只有部分NO3--N发生转化。Yuansheng HU等〔33〕发现黄铁矿自养反硝化过程在pH为5~8条件下进行,特别在pH为5~6的酸性条件下表现最优。可能的原因为:(1)铁硫化物反硝化菌在低pH环境下具有最适值〔34〕;(2)低pH促进了铁硫化物的溶解,从而提高反硝化速率〔29〕;(3)硫铁矿可作为缓冲剂,维持反应系统pH的稳定。

Fangmin CHEN等〔28〕发现,pH为6.5时NO3-去除率仅为57.39%;pH调至7.5时,系统对NO3-的去除率达到96.99%;pH为8.5,NO3-去除率降到86.71%。Ruihua LI等〔29〕研究证明,随着酸度的增加,反硝化速率提高;此外,进水pH为7~8时,碱度的增加能改善反硝化作用,但进水pH>8后反硝化速率下降。较低或较高的pH环境可能导致碳酸根分解和二氧化碳排出,消耗可用的碳源,从而抑制细菌功能,使自养反硝化过程受阻〔35〕。

基于式(1)计算可得,去除1 mg NO3--N需消耗3.91 mg碱度(以CaCO3计)。Dongjin WAN〔36〕等研究发现,随着HRT的缩短,消耗的碱度也在下降,且碱度消耗变化值偏离理论值,其认为原因在于碱度受微生物和水中其他离子的干扰。

综上,自养反硝化菌的最适pH在6.8~8.2。为保持自养菌的活性及保证反应系统的脱氮速率,应使进水pH在合理范围内,同时系统中有足够的碱度。

2.4 其他影响因素

硫和铁硫化物在水中的溶解度极低,当反应体系无法提供足够的电子供体时,硝酸盐不能完全还原,亚硝酸盐发生积累。姚鹏程〔37〕发现硫氮比(物质的量之比)为理论值1.1时,NO3--N转化速率仅为20%;随着硫氮比的增加,NO3--N转化速率也在增加,硫氮比为10时NO3--N转化速率增加到90%以上。高硫氮比可增加反硝化菌与硫和硫化物的接触面积,从而提高反硝化速率。

Zhe KONG等〔5〕发现COD增加会抑制铁硫化物的自养反硝化,增加异养反硝化的比例;尽管进水中含有COD会增加硝酸盐的去除效果,但前端COD的供应不稳定,会同时抑制异养和自养反硝化过程,造成反应体系恶化。王晖〔38〕研究发现,硫氮比≥0.7、进水含有低浓度COD时,硝酸盐去除率在90%以上且能够去除部分COD,提高反应系统的出水水质。

低碳氮比污水经过自养反硝化处理后可去除90%以上的硝酸盐,同时对水中的低浓度COD有去除效果,但控制硫氮比与COD之间的利用比例比较困难,需要进一步研究自养脱氮的同时利用残余COD增加脱氮效果。

3 硫/铁硫化物自养反硝化微生物菌属

反硝化脱氮硫杆菌是自养反硝化工程中最主要的微生物菌种,其中Thiobacillus denitrificans和Sul⁃furimonas denitrificans是最常见和占优势的反硝化细菌〔39〕。表2为废水处理中不同电子供体的自养反硝化菌属。

表2 废水处理中鉴定的反硝化菌属Table 2 Denitrifying bacteria identified in wastewater treatment

Hydrogenophilaceae能够溶解硫颗粒,促进硫的自养反硝化进程,其在接种污泥中的相对丰度<0.1%,反应器运行结束时其丰度增加到37.1%,与T.denitrificans均是参与硫自养反硝化的主要物种〔40〕。Thiobacillus denitrificans和Sulfurimonas denitrificans是最常见的硫自养反硝化细菌,具有将硝酸盐还原为N2和将硫氧化为硫酸盐的能力。Geothrix作为第三种优势属可能在系统中发挥Fe0氧化反硝化作用〔42〕。

霍珊〔32〕利用分子生物学分析自养反硝化微生物群落,发现Thiobacillus是系统主要的微生物菌属,占总微生物的50%,其次为Sulfurimonas,约占微生物的20%。Shenghui WANG〔42〕等研究了S-Fe反应器微生物的种类组成,表明S.denitrificans约占所有细菌的50%,T.denitrificans是硫基自养反应器中报道的主要自养反硝化菌,仅约占22%。

Yongwei ZHANG等〔18〕发现磁黄铁矿自养反硝化反应器的主要细菌是Thiobacillus和Sulfurimonas。周 翔〔44〕研究发现,硫 养体系中Thiobacillus和Sulfurimonas相对丰度分别为17.44%和3.79%,而硫铁矿体系中Thiobacillus的相对丰度为22.68%;这是因为Thiobacillus不仅可利用硫、硫化物进行自养反硝化,同时可利用Fe(Ⅱ)进行自养反硝化。

Thiobacillus denitrificans和Sulfurimonas denitrifi⁃cans是硫/硫铁矿自养反硝化过程的最主要的脱氮硫杆菌属。同时,兼性自养菌,如Paracoccus denitrificans、Thiobacillus delicatus、Thiobacillus thyasiris、Thiosphaera pantotropha、Pseudomnas、Bacillus、Ochrobactrum和Rhodococcus也具有反硝化能力〔12〕。

4 工程应用

地下水的硝酸盐污染具有长期性和持续性,因此地下水的修复异常困难,常规异养处理会造成二次污染,而添加硫铁化物修复是一种可行的方法〔45〕。Shunlong JIN等〔45〕利用黄铁矿混合木屑修复受硝酸盐污染的地下水,HRT为12 h、进水NO3--N为50 mg/L时,出水NO3--N<25 mg/L,增加木屑未对反硝化起到促进作用。

硫/硫铁化物也可用于污水的深度处理,如污水处理厂二级出水、雨水等。Wei WANG等〔46〕将硫与菱 铁矿混合进行中试,HRT为8、4 h时,NO3--N去除率分别为(86.8±15.8)%、(67.7±20.0)%;PO43--P去除率分别为(72.8±28.5)%、(60.8±32.1)%,且稳定 运行401 d未 发生堵塞。Zhibin GE等〔47〕构建 人工湿地探究黄铁矿对氮、磷去除效果的影响,HRT为72 h、运行3 a,黄铁矿对芦苇生长无影响,且对TN和TP的 去 除 率 分 别 为(69.4±21.4)%、(87.7±14.2)%。E.SAHINKAYA等〔48〕构 建 了40 m3/d的反硝化装置,硝态氮体积负荷为0.15 kg/(m3·d)时能完全 脱 氮。Yin ZHOU等〔49〕采用硫复合填料生物滤池探究工程应用中的反硝化性能,结果表明硫复合填料生物滤池的最大硝态氮体积负荷为0.75 kg/(m3·d),通过气-水联合反冲洗能够去除老化生物膜,防止反应器堵塞〔25〕。

上述中试及工程应用结果表明,硫/硫铁化物作为填料可有效修复地下水硝酸盐污染,并进行二级出水的深度脱氮除磷,工程应用成本低、效益高。

5 总结与展望

相较于传统异养反硝化,自养反硝化成本低、产泥量少,得到越来越多的关注。特别对于低碳氮比的二级出水,应用前景更为广阔。同时,铁硫化物参与反应产生的铁离子可与磷酸根结合除磷,降低加药除磷的成本。

硫可作电子供体自养反硝化去除硝酸盐,但对磷没有去除效果。在填料中增加碳酸钙基质能除磷,但需调节到碱性条件,增加成本。延长HRT,铁硫化物能去除90%以上的氮磷,纳米硫铁矿可缩短HRT,但制作条件严苛,增加应用成本。

将硫与铁硫化物研磨混合造粒,能够克服以上问题,但仍存在以下难点:

(1)两者混合后如何提高铁硫化物在反应体系中的贡献率,增加铁离子溶出与磷反应达到更高的除磷效果是需要关注的问题;同时,当污水中硝酸盐高于33.2 mg/L,产生的硫酸盐会超过饮用水标准(250 mg/L),造成出水硫酸盐不达标。

(2)反应形成的磷酸铁或氢氧化铁胶体吸附的磷酸盐会沉积在填料表面,阻碍填料与微生物接触,降低反应速率;运行过程中还会出现细胞老化脱落,造成反应器堵塞。通过加大反冲洗力度可以除去沉淀和老化生物膜,但力度过大会造成填料表面和体系中的微生物减少,同时反冲洗方式和周期频率也是需要考虑的问题。

(3)硫/硫铁矿运行产泥量少于传统异养反硝化,但自养反硝化启动周期长,接种污水处理厂的污泥需驯化7~14 d才能启动成功,需开发快速启动反应器的接种方法。

(4)在二级处理污水工程应用中,长时间厌氧会发生硫酸盐还原反应,产生硫化氢气体。应根据实际应用调整反应器运行条件,进一步完善运行处理设备,使硫/硫铁矿自养反硝化有更广阔的应用空间。

猜你喜欢
供体硫化物硝酸盐
硝酸盐并不致癌还或有益处
热变形工艺对铈-硫易切削不锈钢中硫化物形态演变的影响
1215易切削钢硫化物碲改质及其机制分析
儿童活体肝移植供肝经腹腔镜获取对供体术后生命质量的影响
儿童肝移植供体照顾负担现状及影响因素分析
水产养殖过程中潜在硫化物风险预判
气相分子吸收光谱法测定水中硫化物的不确定度评定
奶牛硝酸盐中毒的防治
肝移植术后感染的供体相关性危险因素分析
香椿食用前需焯水