借“搬移”巧添线构全等变“通途”

2022-10-11 05:54黄萍
初中生世界 2022年34期
关键词:辅助线中点本题

文/黄萍

从全等三角形开始,几何越发充满智慧,有时一条辅助线能使“天堑”变“通途”。平移、旋转、翻折等变换只改变图形的位置,不改变形状与大小,变换前后图形全等。若把这几种变换(组合)称为“搬移”,我们可以通过“搬移”巧添辅助线,构造全等三角形,从而解决问题。

例如图1,E是BC的中点,点A在DE上,且∠BAE=∠D,求证:AB=CD。

图1

方法1依托已知等边“搬移”三角形

【分析】如图2,延长AE到F,使EF=AE,连接CF,则△ABE≌△FCE,所以CF=BA,∠F=∠1=∠D,所以CD=CF=AB。

图2

【点评】构造全等三角形是解决本题的关键。本题思路是利用倍长过中点的线段,构造“八字形”全等。

方法2指向待证等边“搬移”三角形

【分析】如图3,在DE上取点F,使CF=BE,因为BE=CE,得CF=CE,则∠CFE=∠CEF,所以∠DFC=∠AEB。再根据∠1=∠D,证得△ABE≌△DCF,则AB=CD。

图3

【点评】若待证的结论一定“真”,则由它也能打开思路。运用目标启发思考也要学会哦。

研究图形的基本视角是“边”和“角”,我们前面利用相等的边构造全等三角形,下面再看看相等的角。

方法3由等角出发“搬移”三角形

【分析】基于∠1=∠D这一条件,我们不妨“搬移”△CDE。如图4,使∠D与∠1重合,可这样叙述辅助线:在DE的延长线上取点F,使BF=BE。余下的小读者自己完成哦!(方法2也可以认为是从“角”的角度考虑。)

图4

从相等的边和相等的角这两个视角出发,还有其他搬移方法,同学们试试看吧!

初学全等,我们不妨借力“搬移”来投石问路,通过观察,思考如何合理添加辅助线,构造全等三角形。当你和各种图形“相处熟悉”了,解题自然就水到渠成啦!

猜你喜欢
辅助线中点本题
例谈初中数学几何图形求证中辅助线的添加与使用
中点的联想
精选课本题改编练习
常用辅助线在圆中的运用
今天是几月几日
特殊四边形中添辅助线的常用方法
找规律
Have Fun with Math
中点出招,招招喜人
圆锥曲线的中点弦方程和中点弦长公式