杨叶华,黄兴成*,朱华清,李 渝,张 松,张雅蓉,刘彦伶,蒋太明
(1 贵州省农业科学院土壤肥料研究所,贵州贵阳 550006;2 农业农村部贵州耕地保育与农业环境科学观测实验站,贵州贵阳 550006;3 贵定县农业农村局,贵州贵定 551300;4 贵州省农业科学院,贵州贵阳 550006)
微生物在土壤生态系统物质转化和能量传递等过程中具有至关重要的作用,其群落结构能直接或间接地反映土壤肥力和生产力[1–3]。施肥是农业生产中最常见的管理措施,通过改变农田土壤理化性状、作物生长等来影响微生物的生长繁殖,是影响土壤微生物群落结构的重要因素[4–6]。了解不同施肥下土壤微生物群落结构的演变特征,对农田土壤培肥及肥料高效利用具有重要意义。
受农民施肥习惯影响,在农田生态系统中常见的施肥模式有施用化肥、有机肥和有机无机肥配施,不同施肥模式对土壤微生物的影响结果不一[7]。化肥在提升农作物产量方面具有重要作用,且因其施用方便、见效快等特点而备受农民青睐,单施化肥现象较为普遍。研究表明,长期氮磷钾平衡施用有利于改善土壤微生物特性,增加土壤微生物群落丰富度和优势度,还能促进微生物功能多样性[8]。化肥偏施或过量施用则不利于微生物生长,长期施用降低土壤微生物活性和多样性[9]。有机肥作为优质的肥料,施用后能够增加土壤有效养分和改善土壤理化性质,为微生物创造良好的生态环境,有利于提高微生物总量、各类菌群的生物量、微生物活性和优化微生物群落结构[10–11]。针对中国农田区域尺度施肥对微生物的影响研究表明,施用有机物料处理的土壤微生物磷脂脂肪酸含量、碳和氮含量是施用化肥的2倍以上[12]。更多的研究表明,有机无机肥配施更有利于土壤微生物生长。王伟华等[13]研究发现,有机无机肥配施能够提高细菌、真菌、革兰氏阴性菌和革兰氏阳性菌磷脂脂肪酸含量和碳利用率,且有机肥的效果比秸秆效果更佳。唐海明等[14]研究表明,有机无机配施有利于维持稻田根际微生物群落多样性,且高量有机肥效果更显著。但有机无机肥配施对微生物的影响机理复杂,目前其影响机制还不明确,可能与土壤生物学性状改善有关。此外,在有机无机肥配施的施肥模式下,土壤的生物学性状还受土壤类型[15]、气候条件等[16]因素影响。任凤玲等[17]研究表明,亚热带季风区施用有机肥比温带大陆气候区和温带季风气候区施用更有利于提高农田土壤微生物量;且中性土壤施用比酸性和石灰性土壤施用提高效果更好。因此,因地制宜研究有机无机肥配施对土壤微生物的影响,对区域农田土壤施肥具有现实意义。黄壤是我国西南湿润地区的主要耕作土壤,其中,贵州黄壤面积占全国25.3%,占贵州土壤面积46.4%,在贵州农业生产中具有至关重要地位[18],但尚不明确有机无机肥配施下黄壤微生物群落组成特征。基于此,本研究依托农业农村部贵州耕地保育与农业环境科学观测试验站的长期定位试验,采用Illumina Miseq高通量测序技术,探讨长期不同有机无机肥配施模式对黄壤性水稻土细菌群落结构的影响,并了解其主要影响因子,为黄壤区耕地健康管理提供科学依据。
试验点位于贵州省贵阳市花溪区贵州省农业科学院内“农业农村部贵州耕地保育与农业环境科学观测试验站”的长期肥料定位试验田(106°39′52″E,26°29′49″N),地处黔中黄壤丘陵区,平均海拔 1071 m,年平均气温15.3℃,年降雨量1100~1200 mm,无霜期270天左右,属于亚热带季风气候。土壤类型为黄壤母质上形成的水耕人为土(Anthrosols),成土母质为三叠系灰岩与砂页岩残积物。试验于1994年开始建设和匀地,1995年正式开展,各小区面积为201 m2。试验前土壤化学性质为:pH 6.75、有机质 44.50 g/kg、全氮 1.96 g/kg、全磷 2.30 g/kg、全钾13.8 g/kg、碱解氮 134 mg/kg、有效磷 13.4 mg/kg、速效钾 294 mg/kg。
试验共设14个处理,本研究选取其中5个处理:1)不施肥(CK);2)全量化肥(NPK);3)1/4牛厩肥+3/4化肥(1/4M+3/4NP);4)1/2牛厩肥+1/2化肥(1/2M+1/2NP);5)全量牛厩肥(M)。具体施肥量见表1。化肥选用尿素(N 46%)、普钙(P2O516%)和氯化钾(K2O 60%);有机肥用牛厩肥,其平均含碳(C)10.4%、氮 (N) 2.7 g/kg、磷 (P2O5) 1.3 g/kg、钾 (K2O)6 g/kg。种植制度为一季中稻,水稻移栽前按处理分别施用磷钾肥或配施有机肥作基肥,施化肥处理在水稻生长期内追施2次尿素。
表1 试验处理与年施肥量Table 1 Test treatment and annual fertilization amount
1.2.1 取样方法 于2019年11月水稻收获后,采集耕层(0—20 cm)土壤样品并测定土壤容重。采用“S”形五点取样法,随机取5个位点土壤样混合,每个处理3次重复。土样混合均匀后过2 mm筛除去杂质,一部分存在–80℃冰箱用于提取土壤DNA,剩余部分风干后测定土壤养分含量。
1.2.2 土壤细菌测定 土壤样品DNA提取根据FastDNA 试剂盒 (MP Biomedicals,Cleveland,USA)说明书进行操作,完成基因组DNA提取后,用ND 2000 分光光度计 (Thermo Fisher Scientific Inc., Waltham,MA, USA)进行检测。细菌 16S rRNA 的 V3~V4 区采用 338F (5′-ACTCCTACGGGAGGCAGCA-3′)和806R (5′-GGACTACHVGGGTWTCTAAT-3′)进行扩增,通过2%琼脂糖凝胶电泳进行检测,并对其PCR产物进行切胶回收。高通量测序委托上海派森诺生物科技有限公司采用Illumina Miseq高通量测序平台完成,同时完成文库构建。
1.2.3 土壤理化性质测定 土壤容重采用环刀法,pH采用用电位法(水土比2.5∶1),土壤总有机碳采用重铬酸钾法,全氮采用半微量凯氏定氮法,碱解氮采用碱解扩散法,全磷、有效磷采用紫外可见分光光度法,全钾、速效钾采用火焰光度法[19]测定。
根据序列码将双端序列分配给各个样本,并使用 QIIME (v1.8.0, http://qimei.org/)过滤低质量序列。双端序列使用 FLASH (v1.2.7,http://ccb.jhu.edu/s oftware/FLASH/)组装。USEARCH用于检查和消除嵌合序列(Edgar,2010)。检查后,应用QIIME中的序列比对工具UCLUST以97%的序列相似度构建操作分类单元(OTUs)丰度矩阵。基于矩阵,使用QIIME获得每个样本在门、纲、目、科和属5个分类级别的分类组成和丰度。
采用SPSS 20.0软件进行统计分析,使用单因素ANOVA方差分析计算检验差异显著性(Duncan检验,P<0.05为差异显著)。运用Canoco5.0软件做主成分分析(PCA)和冗余分析(RDA),采用Origin 2018 和 Excel 2010 绘制图表。
长期施肥改变了土壤的物理化学性质(表2)。与不施肥(CK)比较,施肥提高了土壤有机质、全磷和有效磷含量,分别提高了21.22%~44.05%、22.43%~48.19和85.23%~146.94%。施肥导致土壤pH不同程度地降低,与CK相比降低了0.27~0.60个单位,其中单施有机肥(M)和有机无机肥配施(1/2M+1/2NP)处理降低幅度较大。结果还显示,施用有机肥处理(1/4M+3/4NP、1/2M+1/2NP和M)显著提高了土壤全氮、碱解氮和速效钾含量,与CK相比,分别增加了26.32%~45.79%、31.42%~61.71%和18.67%~42.93%,但与对照相比全量化肥施用(NPK)对土壤全氮、碱解氮和速效钾含量影响均不显著。
表2 各处理土壤理化性质Table 2 Soil physical and chemical properties in each treatment
施肥显著影响土壤细菌多样性指数(Shannon)、优势度指数(Simpson)和均匀度指数(Pielou),对丰富度指数(Chao1)影响较小(表3)。与CK比较,氮磷钾(NPK)施用降低了土壤细菌Simpson指数,但Shannon和Pielou指数与CK处理间差异不显著。与CK比较,施用有机肥1/4M+3/4NP、1/2M+1/2NP和M处理的Shannon指数、Simpson指数和Pielou指数均有提高,分别提高1.67%~1.86%、0.020%和0.73%~0.95%,不同有机肥处理间差异多不显著。
表3 不同施肥处理细菌α多样性指数Table 3 Soil bacterial α diversity index as affected by different fertilization treatments
在门水平上,共获得48个细菌类群,其中相对丰度>1%的类群10个,共占菌群比重95.77%~96.68% (图1a)。其中优势细菌门(相对丰度>10%)主要由酸杆菌门(Acidobacteria) 30.76%~36.44%、变形菌门(Proteobacteria) 22.81%~27.16%、绿弯菌门(Chloroflexi) 20.30%~24.30%组成,共占菌群比重79.08%~81.26%。放线菌门(Actinobacteria) 3.59%~4.73%、棒状杆菌门(Rokubacteria) 3.12%~4.20%、芽单胞菌门(Gemmatimonadetes) 2.31%~2.98%、拟杆菌门(Bacteroidetes) 1.41%~2.19%、亚硝酸盐氧化菌门 (Nitrospinae) 0.68%~2.13%、Latescibacteria 1.01%~1.40%和硝化螺旋菌门(Nitrospirae) 0.89%~1.24%,共占菌群比重14.97%~16.68%。相比CK,1/4M+3/4NP增加了Proteobacteria、Bacteroidetes和Nitrospirae的相对丰度;1/2M+1/2NP降低了Gemmatimonadetes相对丰度;M和1/2M+1/2NP增加了Acidobacteria相对丰度;1/4M+3/4NP、1/2M+1/2NP和M降低了Rokubacteria和Nitrospinae的相对丰度,而NPK增加了Proteobacteria相对丰度,其他菌门差异不显著。
图1 不同处理细菌群落基于门(a)和纲(b)分类水平的柱状堆叠图Fig.1 Bacterial relative abundance of bacterial communities at the phylum (a) and class (b) classification levels under different treatments
在纲水平上,共获得114个类群,平均相对丰度>1%的类群有16个(图1b)。其中,Subgroup 6、厌氧绳菌纲(Anaerolineae)、变形菌纲(Deltaproteobacteria)、γ-变形菌纲 (Gammaproteobacteria)、α-变形菌纲(Alphaproteobacteria)、母链菌纲[Blastocatellia(Subgroup 4)]、KD4-96和 NC10相对丰度分别为16.79%~20.97%、12.31%~14.75%、9.77%~11.23%、8.70%~11.66%、4.20%~5.82%、3.31%~4.78%、3.67%~4.46%和3.12%~4.46%,其他类群相对丰度则在0.68%~3.37%。与CK相比,NPK增加了Gammaproteobacteria相对丰度,其他菌纲差异不显著;施用有机肥1/4M+3/4NP、1/2M+1/2NP和M增加了Alphaproteobacteria的相对丰度,降低了NC10和P9X2b3D02的相对丰度。
采用主成分分析对不同处理的群落组成进行差异分析(图2)。结果显示,在门和纲水平上,不施肥(CK)和单施化肥(NPK)处理的细菌群落组成较为相似,有机无机肥配施(1/4M+3/4NP、1/2M+1/2NP)处理的细菌群落组成较为相似。在门水平上,第1、2主成分轴对细菌群落结构组成变异的解释量分别为57.3%和15.8%,合计73.1% (图2a),纲水平解释量为66.9% (图2 b)。在属水平上,第1、2主成分轴对细菌群落结构组成变异的解释量分别为84.1%和8.2%,合计92.3% (图2c)。施用有机肥(1/4M+3/4NP、1/2M+1/2NP和M)处理的细菌群落组成相似,CK和NPK处理的细菌群落组成均与施用有机肥处理有差异。
图2 不同处理基于细菌群落门(a)、纲(b)和属(c)水平的主成分分析Fig.2 Principal component analysis of bacterial communities at the phylum (a), class (b) and genus(c) levels under different treatments
采用冗余分析解析土壤理化性质对门水平细菌群落结构的影响,结果表明不同施肥处理细菌群落结构明显不同,CK和NPK处理相似,1/4M+3/4NP、1/2M+1/2NP、M处理相似(图3)。结果还显示,RDA分析的第一轴、第二轴解释度分别为50.0%和10.0%,解释度60.0%。在单因素影响中,土壤全氮(TN)、碱解氮(AN)、速效钾(AK)、pH、有效磷(AP)和全磷(TP)是影响土壤细菌群落组成的重要因子,其中全氮(TN,47.6%,F=11.8,P=0.002)、碱解氮(AN,46.5%,F=11.3,P=0.002)和速效钾(AK,35.6%,F=7.2,P=0.004)是关键因子。CK和NPK处理群落结构在pH上的投影在正方向,而1/4M+3/4NP、1/2M+1/2NP和M处理在负方向上,说明有机肥处理通过降低pH与CK、NPK处理形成差异,而在TN、AN、AK上的投影上相反。TN、AN、AK、AP和TP与酸杆菌门(Acidobacteria)、放线菌门(Actinobacteria)和拟杆菌门(Bacteroidetes)呈明显锐角,为正相关关系,与其他菌门呈负相关关系,pH则相反。
图3 不同处理基于土壤理化性质和细菌群落门水平的冗余分析Fig.3 Redundancy analysis of based on soil chemical properties and dominant bacterial phyla
土壤细菌α多样性指数是表征土壤细菌群落多样性和生态系统稳定的重要指标。本研究结果表明,与不施肥(CK)和长期单施化肥(NPK)比较,单施有机肥(M)和有机无机肥配施(1/4M+3/4NP、1/2M+1/2NP)均促进了土壤细菌的生长和繁殖,土壤细菌的Shannon指数、Simpson指数和Pielou指数的提高与此一致(表3)。Liu 等[20]在华北地区的研究结果也与本研究一致。原因可能是施用有机肥改善了土壤理化性质,能够提高土壤肥力,为土壤细菌提供了一个良好的生长环境,而长期施用化肥和不施肥下土壤退化严重,土壤环境营养物质缺乏,限制了细菌生长[21–23]。
不同施肥均会影响土壤细菌群落结构,总体上,处理间的细菌优势门和纲类群相似,但相对丰度存在一定差异(图1)。不同施肥处理优势菌门(相对丰度>10%)为酸杆菌门(Acidobacteria)、变形菌门(Proteobacteria)和绿弯菌门(Chloroflexi),这与王娟娟等[24]研究得到的水稻土细菌群落优势类群相似。可能是因为试验土壤均为稻田中性土壤,且同处中纬度亚热带季风气候,水热条件类似,因此土壤细菌群落结构和优势菌群相似度较高。与CK比较,长期施肥不同程度地提高了变形菌门(Proteobacteria)的相对丰度,试验处理的相对丰度从高到底依次为NPK>1/4M+3/4NP>1/2M+1/2NP>M>CK。原因可能是长期施肥提高了土壤肥力,促进作物根系生长,进而影响了与根系生长关系密切的变形菌门[25]。Proteobacteria的相对丰度随着有机肥替代量的增加而降低,且1/4M+3/4NP和NPK的Proteobacteria相对丰度显著高于CK,说明在本研究中,Proteobacteria受化肥的影响更加显著。与CK和NPK处理相比,施用有机肥处理均降低了棒状杆菌门(Rokubacteria)和亚硝酸盐氧化菌门(Nitrospinae)相对丰度,提高了拟杆菌门(Bacteroidetes)相对丰度。Rokubacteria为近年被识别的土壤细菌门类,尚未明确施肥对其丰度和功能性的影响机理,但肯定了Rokubacteria合成抗生素的潜力[26],从侧面反映出长期施用有机肥可降低致病性细菌数量,对土壤健康有重要意义。亚硝酸盐氧化菌门(Nitrospinae)是参与有机碳固定过程的重要细菌种类[27],长期施用有机肥降低土壤Nitrospinae丰度的原因可能是施用有机肥处理增加了外源碳源,微生物的固碳作用减弱。而施用有机肥提高拟杆菌门(Bacteroidetes)相对丰度的原因可能是有机肥为牛厩肥,动物的肠道中有较多的Bacteroidetes,牛粪发酵成的有机肥含有Bacteroidetes细菌[28]。近年来,随着研究者对土壤微生物的深入研究,一些土壤碳循环[29]、氮循环[30]相关功能性细菌逐渐被认识,但整体来看,功能性微生物仍处于探究阶段,因此,在后续的研究中,应系统对其进行研究。本研究通过主成分分析发现,无论在细菌门水平还是纲水平上,1/4M+3/4NP、1/2M+1/2NP和M处理的土壤细菌群落组成相似度较高,CK和NPK聚类在一起,相似度高(图2),说明不同处理间土壤细菌群落结构差异是施用有机肥造成的,刘平静等[31]在土上的相关研究结果与本研究结果一致。
另外,本研究结果还表明,长期不同施肥改变了土壤理化性质,其中土壤全氮、碱解氮、速效钾、pH、有效磷和全磷养分的差异是导致土壤细菌群落组成差异的重要因子(图3)。一些研究者的相关研究结果与本研究有所差异。如邢亚薇等[32]研究表明,土壤pH、全氮和有机碳含量是影响黄土旱塬农田土壤微生物群落丰度的重要因子;李春越等[33]研究发现,黄土旱塬农田土壤理化性质对土壤微生物群落结构差异影响大小表现为为:全氮>全磷>pH>有机质。产生差异的原因可能是不同试验点的施肥量、施肥模式等存在差异,土壤的理化性质对施肥的响应不同导致。
在贵州黄壤区,长期单施有机肥和有机无机肥配施能够提高土壤肥力,改善土壤细菌的生长环境,显著提高土壤细菌的多样性、优势度和均匀度,并改变了土壤细菌群落结构。施用有机肥对提升贵州黄壤区土壤肥力,促进农田生态系统稳定和健康发展具有重要意义,是值得推荐的施肥模式。