张新, 陈文娜, 宋囡, 曹慧敏, 王俊岩
· 短篇论著 ·
黄芪甲苷对棕榈酸诱导的小鼠RAW264.7细胞铁死亡的调控作用*
张新, 陈文娜△, 宋囡, 曹慧敏, 王俊岩
(辽宁中医药大学,辽宁 沈阳 110000)
探讨黄芪甲苷(astragaloside IV, ASIV)对棕榈酸(palmitic acid, PA)诱导的小鼠RAW264.7巨噬细胞铁死亡的调控作用。选取对数生长期的RAW264.7细胞,加入终浓度为0、50、100、150和200 mg/L的ASIV,或0、100、200和400 μmol/L的PA,细胞成像仪培养48 h后计数分析,观察ASIV和PA对RAW264.7细胞活力的影响。再将RAW264.7细胞分为对照组、PA (200 μmol/L)组和PA (200 μmol/L)+ASIV (100 mg/L)组。油红O染色观察RAW264.7细胞脂质沉积情况;细胞免疫荧光染色观察RAW264.7细胞中谷胱甘肽过氧化物酶4(glutathione peroxidase 4, GPX4)及铁蛋白重链1(ferritin heavy chain 1, FTH1)的蛋白表达水平;RT-qPCR和Western blot测定GPX4、FTH1、P53和溶质载体家族7成员11(solute carrier family 7 member 11, SLC7A11)的mRNA和蛋白表达水平;活性氧(reactive oxygen species, ROS)荧光探针检测各组RAW264.7细胞ROS水平。细胞成像仪筛选出200 μmol/L和100 mg/L分别为后续实验中PA和ASIV的相对最佳浓度。与对照组相比,PA组细胞核缩小且不清晰,细胞质内可见弥漫性橘红色脂滴;细胞免疫荧光结果显示,PA组GPX4和FTH1蛋白平均荧光强度显著降低(<0.01);PA组P53表达显著增加(<0.05),SLC7A11、GPX4和FTH1表达均显著减少(<0.05);PA组ROS水平显著增高(<0.05)。与PA组相比,PA+ASIV组细胞核部分恢复正常,细胞质内橘红色脂滴减少;PA+ASIV组GPX4和FTH1蛋白平均荧光强度显著升高(<0.01);PA+ASIV组P53表达显著降低(<0.05),SLC7A11和GPX4表达显著增加(<0.05),FTH1蛋白表达未见显著差异(>0.05);PA+ASIV组ROS水平显著降低(<0.05)。ASIV能够抑制小鼠RAW264.7巨噬细胞的脂质沉积,可能与调控铁死亡相关因子表达有关。
黄芪甲苷;铁死亡;棕榈酸;巨噬细胞
非酒精性脂肪肝病(non-alcoholic fatty liver disease, NAFLD)作为流行的慢性肝脏疾病之一,全球范围内患病率约为25%[1],给人们带来巨大的医疗负担。NAFLD病因病机复杂多变,有研究表明多种炎症细胞参与了NAFLD的发生发展和预后[2-3]。巨噬细胞作为肝脏中重要的免疫调控细胞,在NAFLD病理进程中发挥着重要的作用,有望成为治疗NAFLD的重要靶细胞[4]。
脂肪酸是由多个碳原子组成,具有一定的脂毒性,脂肪酸过载是NAFLD发病机制的核心[5]。棕榈酸(palmitic acid, PA)作为一种机体内最丰富的饱和脂肪酸,脂毒性作用较强,非脂肪组织的细胞长期暴露于较高浓度的PA,会刺激细胞脂质积累[6],引起脂质过氧化导致细胞铁死亡。研究显示铁死亡与非酒精性脂肪肝病密切相关,可能是导致NAFLD发生的重要病理机制之一[7-8]。近年的研究多采用PA诱导细胞铁死亡探讨其在脂质沉积中发挥的作用[9-10]。铁死亡是一种不同于坏死、凋亡和自噬等的新型程序性死亡方式,其特征为细胞内氧化还原系统失衡,特别是氧化还原酶谷胱甘肽过氧化物酶4(glutathione peroxidase 4, GPX4)活性降低引起脂质过氧化物的堆积导致铁死亡[11]。
黄芪甲苷(astragaloside IV, ASIV)是黄芪提取物中纯化的一种三萜类皂苷,具有调节免疫、抗氧化应激、改善脂质沉积,降低血脂水平等功效[12-13],但ASIV能否通过铁死亡途径抑制巨噬细胞脂质沉积,以往研究中却鲜有报道。故本项工作通过PA诱导小鼠RAW264.7巨噬细胞,探讨ASIV能否通过调控铁死亡拮抗小鼠巨噬细胞脂质沉积,以期为NAFLD的深入研究提供实验依据。
小鼠RAW264.7单核-巨噬细胞(中国科学院典型培养物保藏委员会细胞库);DMEM高糖培养液(HyClone);胎牛血清(Biological Industries);青霉素-链霉素溶液(Procell);胰蛋白酶(Solarbio);油红O试剂盒(北京百奥莱博科技有限公司);PA(Sigma);ASIV(源叶生物);活性氧(reactive oxygen species, ROS)荧光探针二氢乙啶(dihydroethidium, DHE)购自威格拉斯生物技术有限公司;GPX4抗体、铁蛋白重链1(ferritin heavy chain 1, FTH1)抗体和GAPDH抗体(Abcam);P53抗体(Proteintech);溶质载体家族7成员11(solute carrier family 7 member 11, SLC7A11)抗体(Cell Signalling Technology);FTH1、P53、GPX4和SLC7A11引物(生工生物工程股份有限公司)。Cytation 1细胞成像仪(BioTek);实时荧光定量PCR仪(Thermo Fisher);Tanon 5200化学发光成像分析系统(上海天能科技有限公司)。
2.1RAW264.7巨噬细胞的复苏与培养提前打开水浴箱预热至37 ℃,从-80 ℃冰箱取出冻存管,迅速放入水浴箱中孵育使其快速融化,之后将细胞混悬液转移至培养瓶,加入细胞培养液轻轻混匀置于37 ℃、5% CO2培养箱中培养,全程需无菌操作。
2.2最佳添加浓度的筛选取对数生长期的RAW264.7巨噬细胞,调整细胞浓度接种于96孔板,每孔100 μL,周围一圈接种PBS,培养24 h后,根据文献报道[14-17]和课题组前期探索,本实验选取终浓度范围为0、50、100、150和200 mg/L的ASIV,以及0、100、200和400 μmol/L的PA处理细胞,并设置空白对照组及复孔,置于Cytation 1细胞成像仪中继续培养48 h后计数分析,用于确定ASIV和PA的相对最佳给药浓度。
2.3油红O染色将细胞混悬液按每孔3×104个均匀铺在12孔板内,培养箱内孵育24 h后空白组加入新鲜培养液,模型(200 μmol/L PA)组和ASIV(200 μmol/L PA+100 mg/L ASIV)组干预培养48 h。PBS清洗后多聚甲醛固定,之后改良油红O染液密闭染色,弃去染液加入60%的异丙醇溶液清洗,苏木素复染,PBS洗涤后镜下观察并拍照。
2.4细胞免疫荧光染色将细胞混悬液均匀铺在12孔板内,培养箱内孵育24 h后,空白组加入新鲜培养液,模型(200 μmol/L PA)组和ASIV(200 μmol/L PA+100 mg/L ASIV)组干预培养48 h,之后依次进行4%多聚甲醛固定、破膜、封闭、孵育GPX4/FTH1抗体、孵育Ⅱ抗、染核、封片,荧光显微镜下观察并拍照保存。
2.5Western blot法测定铁死亡信号通路相关蛋白表达水平细胞培养及分组给药处理后弃去各瓶中的培养液,加入少量PBS清洗后,用细胞刮收取细胞,RIPA蛋白裂解液提取蛋白,BCA法测定蛋白浓度。每个样品按60 μg上样,SDS-PAGE分离蛋白,电泳结束后将蛋白转移至PVDF膜上,室温下用5%脱脂奶粉封闭1 h,4 ℃孵育Ⅰ抗过夜,Ⅱ抗室温下孵育1 h,加入ECL发光液显色,分析灰度值,用目的蛋白与内参蛋白比值作为目的蛋白表达水平。
2.6RT-qPCR法测定铁死亡相关mRNA表达水平弃去各瓶中的培养液,PBS清洗后加入RNAiso Plus,轻微晃动确保覆盖整个细胞表面,用细胞刮收取细胞,将其转移至离心管并混匀,室温下静置5 min,从核蛋白中分离RNA。Trizol法提取细胞mRNA,PrimeScript®RT Enzyme Mix试剂盒将mRNA反转成cDNA,实时荧光定量PCR法扩增,2-ΔΔCt法进行相对定量分析,检测基因mRNA相对表达水平,具体序列见表1。
表1 RT-qPCR引物序列
2.7ROS荧光探针检测活性氧水平按照上述筛选的药物浓度进行铺板,孵育48 h后弃去原培养液,更换为带有荧光探针DHE的培养液,室温下避光孵育1 h,之后PBS清洗3次,加入DAPI染核5 min,PBS清洗后镜下观察。
采用SPSS 20.0软件统计分析。计量数据以均数±标准差(mean±SD)表示。多组间均数比较采用单因素方差分析,组间两两比较采用LSD-检验。以<0.05为差异有统计学意义。
用不同浓度的PA处理细胞,48 h内随着时间的增加,200 μmol/L的PA对细胞活力影响最小,400 μmol/L的PA抑制细胞活力,故筛选出200 μmol/L作为后续实验PA的相对最佳浓度,见图1。
Figure 1. Effect of different concentrations of palmitic acid on macrophage viability. Mean±SD. n=6.
用不同浓度的ASIV处理细胞,48 h内随着时间的增加,100 mg/L的ASIV促进细胞增长效果最好,150 mg/L和200 mg/L的ASIV抑制细胞增长,故筛选出100 mg/L作为后续实验ASIV的相对最佳浓度,见图2。
Figure 2. Effect of different concentrations of astragaloside IV on macrophage viability. Mean±SD. n=6.
油红O结果显示,对照组小鼠RAW264.7细胞核为蓝色,清晰可见,细胞质内未见橘红色脂滴;与对照组相比,PA组RAW264.7细胞核缩小且不清晰,细胞质可见弥漫性橘红色脂滴,脂质严重蓄积;与PA组相比,PA+ASIV组RAW264.7细胞核部分恢复正常,细胞质内橘红色脂滴显著减少,脂质蓄积程度减轻,见图3。
Figure 3. The lipid deposition levels of RAW264.7 cells in each group. The scale bar=50 µm. Blue: the cell nucleus; orange: the lipid droplets. The more intracellular lipid droplet vacuoles, the more severe the lipid deposition in hepatocytes.
细胞免疫荧光结果显示,与对照组相比,PA组细胞核呈蓝色荧光,细胞质呈绿色荧光且颜色较浅,GPX4和FTH1蛋白的表达显著降低(<0.01);ASIV干预后,细胞质绿色荧光颜色较深,GPX4和FTH1蛋白的表达显著增高(<0.01),见图4。
Figure 4. The expression levels of GPX4 and FTH1 in RAW264.7 cells of each group. The scale bar=50 μm. Blue: the cell nucleus; green: the cytoplasm. In cellular immunofluorescence staining, the darker the cytoplasm, the higher the level of protein expression. Mean±SD. n=3. *P<0.05 vs control group;#P<0.05 vs model group.
与对照组相比,PA组铁死亡相关蛋白P53表达水平显著增加(<0.05),而SLC7A11、GPX4和FTH1蛋白表达均显著减少(<0.05);与PA组相比,PA+ASIV组P53蛋白表达显著减少(<0.05),SLC7A11和GPX4蛋白表达均显著增加,FTH1蛋白表达未见显著差异,见图5。
Figure 5. The expression levels of ferroptosis-related proteins in RAW264.7 cells of each group. Mean±SD. n=3. *P<0.05 vs control group;#P<0.05 vs PA group.
与对照组相比,PA组P53的mRNA表达水平显著升高(<0.05),而SLC7A11、GPX4和FTH1的mRNA表达均显著减少(<0.05);与PA组相比,PA+ASIV组P53的mRNA表达显著减少(<0.05),SLC7A11、GPX4和FTH1的mRNA表达均显著增加(<0.05),见图6。
Figure 6. The mRNA expression levels of ferroptosis-related proteins in RAW264.7 cells of each group. Mean±SD. n=3. *P<0.05 vs control group;#P<0.05 vs PA group.
ROS荧光探针结果显示,与对照组相比,PA组细胞核呈蓝色荧光,细胞质呈红色荧光且颜色较深,ROS水平显著升高(<0.05);ASIV干预后,细胞质红色荧光颜色较浅,ROS水平显著减低(<0.05),见图7。
Figure 7. The level of reactive oxygen species in RAW264.7 cells of each group. The scale bar=40 μm. Blue: the cell nucleus; red: the cytoplasm. In cellular immunofluorescence staining, the darker the cytoplasm, the higher the level of ROS. Mean±SD. n=3. *P<0.05 vs control group;#P<0.05 vs PA group.
受居民饮食结构及社会压力等多重因素影响,NAFLD的发病率逐年上升,已超过慢性乙型肝炎成为我国第一大肝病[18]。NAFLD的主要特征是肝脏对脂肪酸的摄入大于输出,属于低度慢性炎症性疾病,与免疫调控密切相关[2, 19]。而肝脏巨噬细胞作为机体内重要免疫细胞群,具有免疫调节、抗原呈递和吞噬异物等功能,当内源性和外源性病原体侵犯机体时,诱导巨噬细胞活化,激活的巨噬细胞依靠吞噬功能清除病原体[3]。有研究表明,肝脏单纯脂肪变阶段,门静脉区域有部分巨噬细胞聚集浸润[20],提示巨噬细胞可能参与了非酒精性脂肪肝的发生发展。
饱和脂肪酸具有脂毒性,PA作为主要饱和脂肪酸,过量累积可导致免疫细胞损伤。巨噬细胞在高强度长时间的PA刺激下诱导线粒体损伤和活性氧释放増加[16],引起巨噬细胞铁死亡,脂质内部消化和输出障碍,导致脂质异位沉积是引起NAFLD发生的重要环节。而PA是诱发细胞铁死亡发生的主要致病因素[21],故本研究利用体外研究方法,复制了PA诱导的巨噬细胞铁死亡模型。铁死亡发生的关键分子机制是抗氧化酶GPX4与底物结合可将脂质ROS及过氧化氢还原为相应的水和醇类物质,减少脂质过氧化的损伤。而p53通过抑制基因的转录,阻止细胞对胱氨酸的摄取,抑制抗氧化酶GPX4底物的合成导致细胞抗氧化能力减弱[11]。另外FTH1可调控铁离子的储存,FTH1表达水平减低可增加游离铁水平引起Fenton反应促进铁死亡[22]。目前体外实验研究已表明PA可通过调控铁死亡相关因子引起铁死亡及脂质沉积[23-24]。在本研究结果显示PA通过上调p53,下调SLC7A11、FTH1和GPX4的mRNA及蛋白表达促使ROS水平升高,巨噬细胞铁死亡,导致细胞内脂质堆积。因此,本研究结果进一步表明铁死亡通路的激活参与了巨噬细胞脂质沉积,进而引起组织损伤。
ASIV作为一种中药单体成分,可通过调节不同生物学过程发挥抗脂、抗炎、抗动脉粥样硬化等作用[12-13]。在本研究中,我们观察了ASIV对PA诱导的巨噬细胞铁死亡和铁死亡标志蛋白表达的影响。结果显示ASIV可能通过下调P53,上调FTH1、SLC7A11和GPX4部分蛋白及基因的表达抑制PA诱导的巨噬细胞铁死亡及脂质沉积,但对铁死亡蛋白FTH1表达无影响。有研究表明基因具有较多的同源性假基因,它们来自FTH1处理后mRNA的逆向转位,含有一个或多个IRE序列,已表达的假基因的IRE序列可能会与竞争IRE结合因子,而已转录的假基因有可能产生同源的FTH1多肽[25],与ASIV竞争性结合导致真正的FTH1蛋白受到抑制。
综上所述,ASIV可能通过下调P53,上调FTH1、SLC7A11和GPX4的mRNA及蛋白表达抑制PA诱导的巨噬细胞铁死亡,减轻小鼠肝脏巨噬细胞脂质沉积。本实验结果为NAFLD的深入研究提供实验依据。
[1] Cotter TG, Rinella M. Nonalcoholic fatty liver disease 2020: the state of the disease[J]. Gastroenterology, 2020, 158(7):1851-1864.
[2] Hou J, Zhang J, Cui P, et al. TREM2 sustains macrophage-hepatocyte metabolic coordination in nonalcoholic fatty liver disease and sepsis[J]. J Clin Invest, 2021, 131(4):e135197.
[3]田钟元,安秀琴,刘近春. 巨噬细胞在代谢相关脂肪性肝病中的研究进展[J]. 中国现代医生, 2021, 59(34):183-187.
Tian ZY, An XQ, Liu JC. Research progress of macrophages in metabolic dysfunction-associated fatty liver disease[J].Chin Mod Doctor, 2021, 59(34):183-187.
[4] Alisi A, Carpino G, Oliveira FL, et al. The role of tissue macrophage-mediated inflammation on NAFLD pathogenesis and its clinicalimplications[J]. Mediators Inflamm, 2017, 2017:8162421.
[5] Friedman SL, Neuschwander-Tetri BA, Rinella M, et al. Mechanisms of NAFLD development and therapeutic strategies[J]. Nat Med, 2018, 24(7):908-922.
[6]陶嘉,唐超,孟凡强,等. 黑木耳多肽对棕榈酸诱导的脂肪肝细胞的降脂作用[J]. 食品科学, 2022, 43(3):106-113.
Tao J, Tang C, Meng FQ, et al. Lipid-lowering effect of auricularia auricula peptides on palmitic acid-induced liver cells[J]. Food Sci, 2022, 43(3):106-113.
[7] Wu J, Wang Y, Jiang R, et al. Ferroptosis in liver disease: new insights into disease mechanisms[J]. Cell Death Discov, 2021, 7(1):276.
[8] Li X, Wang TX, Huang X, et al. Targeting ferroptosis alleviates methionine-choline deficient (MCD)-diet induced NASH by suppressing liver lipotoxicity[J]. Liver Int, 2020, 40(6):1378-1394.
[9] Magtanong L, Ko PJ, Dixon SJ. Emerging roles for lipids in non-apoptotic cell death[J]. Cell Death Differ, 2016, 23(7):1099-1109.
[10] Qi J, Kim JW, Zhou Z, et al. Ferroptosis affects the progression of nonalcoholic steatohepatitis via the modulation of lipid peroxidation-mediated cell death in mice[J]. Am J Pathol, 2020, 190(1):68-81.
[11] Hirschhorn T, Stockwell BR. The development of the concept of ferroptosis[J]. Free Radic Biol Med, 2019, 133:130-143.
[12] Wu H, Gao Y, Shi HL, et al. Astragaloside IV improves lipid metabolism in obese mice by alleviation of leptin resistance and regulation of thermogenic network[J]. Sci Rep, 2016, 6:30190.
[13] Liang XY, Hong FF, Yang SL. Astragaloside IV alleviates liver inflammation, oxidative stress and apoptosis to protect against experimental non-alcoholic fatty liver disease[J]. Diabetes Metab Syndr Obes, 2021, 14:1871-1883.
[14] 张畅,罗肖肖,晏勇,等. 棕榈酸通过上调脂肪酸转位酶诱导THP-1细胞的炎症反应[J]. 中国病理生理杂志, 2018, 34(3):393-398.
Zhang C, Luo XX, Yan Y, et al. Palmitate triggers inflammatory response by upregulating fatty acid translocase in THP-1 macrophages[J]. Chin J Pathophysiol, 2018, 34(3):393-398.
[15] Liu B, Deng X, Jiang Q, et al. Scoparone improves hepatic inflammation and autophagy in mice with nonalcoholic steatohepatitis by regulating the ROS/P38/Nrf2 axis and PI3K/AKT/mTOR pathway in macrophages[J]. Biomed Pharmacother, 2020, 125:109895.
[16] Ishiyama J, Taguchi R, Yamamoto A, et al. Palmitic acid enhances lectin-like oxidized LDL receptor (LOX-1) expression and promotes uptake of oxidized LDL in macrophage cells[J]. Atherosclerosis, 2010, 209(1):118-124.
[17] 孟婷婷. 黄芪三种成分对小鼠巨噬细胞RAW264.7的免疫增强作用及其机制研究[D]. 合肥:安徽农业大学, 2016:35-36.
Meng TT. Immune enhancing effect and its mechanism of three components of Mongolian milkvetch root in macrophages RAW264.7 of mouse[D]. Hefei: Anhui Agricultural University, 2016:35-36.
[18] Estes C, Anstee QM, Arias-Loste MT, et al. Modeling NAFLD disease burden in China, France, Germany, Italy, Japan, Spain, United Kingdom, and United States for the period 2016-2030[J]. Hepatol, 2018, 69(4):896-904.
[19] 孟民杰,杨钦河,王强,等. 不同治法方药对大鼠脂肪肝Kupffer细胞ERK1/2蛋白活性的影响[J]. 中国病理生理杂志, 2007, 23(8):1551-1555.
Meng MJ, Yang QK, Wang Q, et al. Effects of different therapeutic methods and typical recipes on activition of ERK1/2 in Kupffer cells of rats with fatty liver[J]. Chin J Pathophysiol, 2007, 23(8):1551-1555.
[20] Park JW, Jeong G, Kim SJ, et al. Predictors reflecting the pathological severity of non-alcoholic fatty liver disease: comprehensive study of clinical and immunohistochemical findings in younger Asian patients[J]. Gastroenterol Hepatol, 2007, 22(4):491-497.
[21]姚玉昌,赵多维,肖十雨,等. 棕榈酸对绵羊单核巨噬细胞炎性因子和氧化应激水平的影响[J]. 东北农业大学学报, 2021, 52(7):64-71.
Yao YC, Zhao DW, Xiao SY, et al. Effect of palmitic acid on inflammatory factors and and oxidative stress levels in sheep monocytes macrophages[J]. J Northeast Agric Univ, 2021, 52(7):64-71.
[22]张新,陈文娜,宋囡,等. 丹蒌片通过铁死亡途径减轻非酒精性脂肪性肝病模型小鼠肝脏氧化损伤[J]. 中国病理生理杂志, 2021, 37(12):2180-2188.
Zhang X, Chen WN, Song N, et al. Danlou tablets attenuate oxidative damage of liver in mice with non-alcoholic fatty liver disease through ferroptosis pathway[J]. Chin J Pathophysiol, 2021, 37(12):2180-2188.
[23] Magtanong L, Ko PJ, Dixon SJ. Emerging roles for lipids in non-apoptotic cell death[J]. Cell Death Differ, 2016, 23(7):1099-1109.
[24] 刘洋,孙岳,杨安宁,等. 铁死亡参与高脂饮食诱导的-/-小鼠动脉粥样硬化及ox-LDL诱导的泡沫细胞形成过程[J]. 实用医学杂志, 2021, 37(5):585-590.
Liu Y, Sun Y, Yang AN, et al. Involvement of ferroptosis in atherosclerosis induced by high-fat diet in-/-mouse and formation of ox-LDL-induced foam cell[J]. J Pract Med, 2021, 37(5):585-590.
[25] Di Sanzo M, Quaresima B, Biamonte F, et al. FTH1 pseudogenes in cancer and cell metabolism[J]. Cells, 2020, 9(12):2554.
Regulatory effect of astragaloside IV on palmitic acid-induced ferroptosis of mouse marcrophage cell line RAW264.7
ZHANG Xin, CHEN Wen-na△, SONG Nan, CAO Hui-min, WANG Jun-yan
(,110000,)
To investigate the regulatory effect of astragaloside IV (ASIV) on the ferroptosis of mouse marcrophage cell line RAW264.7 induced by palmitic acid (PA).The RAW264.7 cells at logarithmic growth stage were added with 0, 50, 100, 150 and 200 mg/L of ASIV, or 0, 100, 200 and 400 μmol/L of PA, and then were counted and analyzed after 48 h of incubation in a cell imager to observe the effects of ASIV and PA on the viability of macrophages. The RAW264.7 cells were divided into control group, PA (200 μmol/L) group, and PA (200 μmol/L)+ASIV (100 mg/L) group. Oil red O staining was performed to observe lipid deposition in the RAW264.7 cells. The expression levels of glutathione peroxidase 4 (GPX4) and ferritin heavy chain 1 (FTH1) proteins in the RAW264.7 cells were observed by immunofluorescence staining. The mRNA and protein expression levels of ferroptosis-related proteins GPX4, FTH1, P53 and solute carrier family 7 member 11 (SLC7A11) were determined by RT-qPCR and Western blot, respectively. Reactive oxygen species (ROS) fluorescence probe was used to detect the production of ROS.The results of cell imager showed that 200 μmol/L and 100 mg/L were screened by as the optimal concentrations of PA and ASIV for subsequent experiments, respectively. Compared with control group, the cell nuclei in PA group were shrunk and indistinct, and diffuse orange-red lipid droplets were visible in the cell cytoplasm. Cellular immunofluorescence results showed that mean fluorescence intensity of GPX4 and FTH1 proteins was significantly lowered in PA group (<0.01). The mRNA and protein expression levels of P53 were significantly increased in PA group (<0.05), while the expression levels of SLC7A11, GPX4 and FTH1 were significantly reduced (<0.05). The production of ROS was significantly increased in PA group (<0.05). Compared with PA group, the morphological change of the nuclei in PA+ASIV group were partially restored, and the orange-red lipid droplets in the cell cytoplasm were reduced. The mean fluorescence intensity of GPX4 and FTH1 proteins was significantly increased in PA+ASIV group (<0.01). The mRNA and protein expression levels of P53 were significantly reduced, SLC7A11 and GPX4 were significantly increased in PA+ASIV group (<0.05), but the expression of FTH1 protein was not significantly different (>0.05). The production of ROS was significantly reduced in PA+ASIV group (<0.05).Astragaloside IV inhibits lipid deposition in mouse RAW264.7 cells, which may be related to the regulation of ferroptosis-related factors.
Astragaloside IV; Ferroptosis; Palmitic acid; Macrophages
R392; R363.2
A
10.3969/j.issn.1000-4718.2022.06.018
1000-4718(2022)06-1105-08
2022-02-17
2022-05-20
国家自然科学基金资助项目(No. 81874372)
Tel: 024-31207185; E-mail: chenwn1992@126.com
(责任编辑:宋延君,罗森)